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Number Theory

30 years ago mathematicians used to say “Number Theory” will be
probably last branch of mathematics that will ever find any practical
application....

Basic number theory (like RSA) is easy and fun.

HOWEVER with elliptic curves, the potential number of people that
understand the mathematics behind shrinks to a few dozen of elite
academics worldwide...

Highly problematic...
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Integers

Natural Integers - IN: [0],1,2,3...
Relative Integers - ZZ. -2,-1,0,1,2,3...
Prime number: has no “proper” divisor,
(means except 1 and itself.)
Thm. There is an infinite number of prime numbers.

Easy fact. Each number decomposes in prime
factors.

Hard thing: to compute factors of a given number.
Currently feasible up to some 800 bits.
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Greatest Common Divisor

the biggest such that

a b

divides W

GCD(a,b)
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Relatively Prime Numbers
1=GCD(a,b)

Nicolas T. Courtois, 2006-2014
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“Fundamental Theorem of Arithmetic”

Every integer has a unigue decomposition
in prime factors.

n = p1a_1 N pza_2 % . % pka_k
with p,<p.<....

Nicolas T. Courtois, 2006-2014
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Groups
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Evariste Galois

Very famous French mathematician.

. At age of 14 started reading very serious books papers about algebra
and mathematics.
. For reasons that are not fully explained failed all his exams to enter

Ecole Polytechnique and most of his brilliant work was published and
recognised only later.

. Did completely solve the problem of solvability of polynomial equations
in one variable: “Galois Theory”.

. Was a political activist, against the king of France, frequently arrested
and writing math papers while in prison.

. Died at the age of 20 after a fatal duel with an artillery officer, to some

in the context of a broken love affair, to some stage-managed by the
royalist fractions and the police.

He was the first to use the word Group.
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Group - Definition 0. closure

A set M with an operatior/

o: MxM-> M such that:

_ _ o semi- ~
1) Operation ¢ is associative | group A

2) Has an identity element 1. > monoid
1ea=ae 1=a .
3) Each element a has an
inverse called a-'.

alea=aea’=1 J

> group

10 Nicolas T. Courtois, 2006-2014
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*Pre-Cryptographic Interpretation
of Groups and Monoids

One interpretation is as follows:

« Each element = transformation on
the “message space” = a set M.

 Neutral element:
transformation that does nothing.

 Inverse:
decrypt a “scrambled” message. Don'’t call it encryption
(would imply that this is actually somewhat “secure”...

Group: we always have an inverse:

every message can be decrypted.
— (though in crypto we can relax/work around this requirement a lot...)
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Abelian == Commutative Groups

atb = b+a

12
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Cyclic Groups

One element => generates the whole group.

Cs

13 Nicolas T. Courtois, 2006-2014
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Modular Addition - Congruencies

DEFINITION:
We say that a = b mod n
if n divides a-b.

14 Nicolas T. Courtois, 2006-2014
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Congruencies - Properties

Equivalence Relation:

1. Reflexive: a =a

2. Symmetrica=b ifandonlyifb =a

3. Transitive a=Db and b =c implies a = c.

Every equivalence relations partitions the set into
equivalence classes.

Every congruence mod n partitions ZZ into
classes == residues mod n usually represented
by numbers {0,1,2,..,n-1}.

15 Nicolas T. Courtois, 2006-2014 m.
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Congruencies - Properties
The set of residue classes modulo n is called
Z. orZZ|nZZ.
Elements of Z of are denoted {0,1,2,..,n-1}.

(This is possible because {0,1,2,..,n-1} is a complete set of representative elements.)

Fact:

Usual integer operations (+,*) and special elements
(0,1) translate to the world of residue classes.

Example: ifa=b mod nand c=d mod n
THEN a*c = b*d mod n.

16 Nicolas T. Courtois, 2006-2014 m.
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Modular Addition - Congruencies

a=bmodn
Frequently we simply write
a=b mod n.

This “equality” is a real equality
in we think in terms of residues mod n and
addition modulo n in the set of residues:
{0,1,2,...,n-1}.

17 Nicolas T. Courtois, 2006-2014



Group — Example 1

Let n>=2.
{0,1,2,...,n-1},+ mod n is a group.

The group of residue classes mod n
represented by {0,1,2,..,n-1}.

18 Nicolas T. Courtois, 2006-2014



Group — Example 1.A.

{0,1},+ mod 2 is a group.

Proof:

-modular addition is always associative.
-identity element: a+0=0+a=a.

-we have -a = a here !

19
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Group — Example 1.B.

{0,1,2},+ mod 3 is a group.

BTW: here -a=2a as we have: a+2a=0 mod 3.

20 Nicolas T. Courtois, 2006-2014
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Group ?

Fact:

{1,2,..,n-1}," mod nis a group IF AND ONLY IF nis a
prime.

We call Z* the set {1,2,..,n-1}.

21 Nicolas T. Courtois, 2006-2014



Group — Example 2.A.

{1,2}, * mod 3 is a group.

Proof:
-associative.
-identity element 1*a=a*1=a mod 3.

-inverse: 1-1=1, 2-1=2
- check that 2*2=4 mod 3 = 1.

(Actually this group is the same (ISOMORPHIC) to
{0,1},+.)

22 Nicolas T. Courtois, 2006-2014



Order of a Group, Subgroups

We call order of G or ord(G) the number of elements
in the group (its cardinality).

A sub-group: any subset closed under * that is a
group for the same *.

Theorem [Lagrange]: Order of a subgroup HLIG
divides the order of the group G.
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Order of an Element

Order of an element g: ord(g) =

« Cardinal of the sub-group generated by g:
91’ 92,93, o gord(g)-1 ’1 .
« Itis also the smallest integer such that gord@=1.

Theorem: Order of an element
divides the order of the group.
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Fermat’s Little Theorem
Pierre de Fermat [1601-1655]:

French lawyer and government official,
one of the fathers of number theory
(also involved in breaking enemy ciphers and codes).

Theorem: Let p be a prime.
For any integer aP=a mod p.
Corollary: If az0 mod p, then aP-'=1 mod p.

25
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Example 2.B.

{1,2,3}, * mod 4 is NOT a group.

Proof: 2 has no inverse.

26
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Group ?

{1,2,..,n-1}, *mod nis a group IF AND ONLY IF nis a
prime.

217 Nicolas T. Courtois, 2006-2014
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Rings
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Rings

“When two operations work together nicely” like + and *.

(R,+,%,0,1) is a Ring if:

0 #1 (not serious, avoids one “trivial” ring {0},+,%)
 R,+is an Abelian group

«  R\Y{0}, * is a monoid with identity element 1.

«  *distributes over +:
a(b+c)=ab+ac
(b+c)a=ba+ca

29
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Fields

In modern usage always commutative

30
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Fields [Abel, Galois]

2 added requirements:
. commutative
. each element az0 has an inverse

Corollary: When p is prime, Z, is a field.

31 Nicolas T. Courtois, 2006-2014



Example 2.B.

({0,1,2,3}, + mod 4, * mod 4) is a ring.

It is NOT a field.
Why ?

32 Nicolas T. Courtois, 2006-2014



Example 2.B.

({0,1,2,3}, + mod 4, * mod 4) is a ring.
It is NOT a field.

Why ?
Proof: 2 has no inverse.

33 Nicolas T. Courtois, 2006-2014
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Fields vs. Rings

 |n afield we have all the 4 arithmetic operations
+,-,%,/.

3 1

* Inaring we do not have /.

34
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Z*
We call Z* the set of the invertible elements mod n.
Theorem: it is a group under ™.

When nis a prime, Z.* = Z \{0}.

Otherwise it is even smaller set,
other elements are excluded.

How many?

35
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| eonhard Euler

Swiss mathematician [1707-1783],
10 Swiss franks bills,

Have published some 600 very clever papers.
No scientist has done as much...

JATIOMAL EBANK
MNALA BVUTA

SCHWSLIERISTH

BAMNCA NAT
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Euler Totient ¢ Function

Question 1: How many elements of Z are
invertible 7

Question 2: How many integers between 0 and
n-1 are relatively prime with n ?

Definition: this number is called ¢(n).

37 Nicolas T. Courtois, 2006-2014 m.
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2

Euler Totient ¢ Function

How many elements of Z_ are invertible ?

d(n).

*  0(p) = p-1. For ANY prime (even if p=2).
* Prime powers:
¢(p?) = pa-p*" = p>'(p-1).

38
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Euler-Fermat Theorem

Theorem: GCD(a,n)=1
a®™ =1 mod n.

Re-formulation in Z,;:
for each a (1 Z* we have a® = 1.

39

Nicolas T. Courtois, 2006-2014



Groups and ECC &

Finite Fields

40
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Question:
K=GF(p)=Z,, p prime.

For certain polynomials, Z [X] / P(X) is a field.

Theorem: If and only if P(X) is an irreducible
polynomial.

Irreducible == has no proper divisor of lower degree.

Note: p is called the characteristic of this field.
X+x+... ptimes = 0.

41 Nicolas T. Courtois, 2006-2014 m.
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Theorem:

ALL FINITE FIELDS are of the form Z,[X] / P(X), with
D prime.

Corollary: the number of elements of
a finite field is always q=p™:
They are represented by all polynomials
a, +a, X'+ ... +a_ _, X",
corresponds to all possible n-tuples

(ag,aq, .-, A@n.q)-

42 Nicolas T. Courtois, 2006-2014 m.



Groups and ECC =

Moreover

There is only “one” field that has g=p" elements:
means that all finite fields that have g elements
are isomorphic (and therefore have exactly the
same properties).

43 Nicolas T. Courtois, 2006-2014



Cycling

In Z,we had aP = a [Fermat’s Little Thm.]

In any finite field F that has q elements
ad = a.

44 Nicolas T. Courtois, 2006-2014



Theorem:

The multiplicative group of a finite field F is cyclic.
(in most cases false for Z_* in general)

There is a generator element g, called primitive element, such
that every element of the field F\{0} is a power of g.

(in fact there are MANY such elements).

45
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Theorem:

The multiplicative group of a finite field F is cyclic.

NOT OBVIOUS!

O—Q@

GF(4)

46
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DL Problems

47
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Various DL Problems

Discrete Logarithms
Given p, g, g and hfind x such that

h=g  (mod p)

where g is an element of order g in Fp,.

Elliptic Curve Discrete Logarithms
Given a curve £ of order g over a field Fp, and two points P and Q

on the curve, find x such that
Q = [x]P.

48 Nicolas T. Courtois, 2006-2014



*Slides from Jan 2013

Can take any (finite) group.

Bad Choices:
» Additive group Z or Fg.
» Multiplicative group of or C.

Apparently Good Choices:

Finite fields . > 1S 1t OK?
» Elliptic curves over finite fields.

» Ideal class groups of number fields.
» Jacobian varieties of curves over finite fields.

49 Nigel Smart
N[0l  |ntroduction to ECC Slide 5



Why NOT the cyclic group GF(p™)?

find x such that

h — gx in GF(p™)?

kind of broken...

0 Nicolas T. Courtois, 2006-2014
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DL in GF(p™) Is Broken!

A quasi-polynomial algorithm for discrete
logarithm in finite fields of small characteristic

eprint/2013/400

Razvan Barbulescu!, Pierrick Gaudryv!, Antoine Joux??, and
Emmanuel Thomé!

* Inria, CNRS, University of Lorraine, France
2 Cryptology Chair, Foundation UPMC - LIP 6, CNRS UMR 7606, Paris. France
* CryptoExperts, Paris, France

guasi-polynomial...

Abstract The difficulty of computing discrete logarithms in fields ¥
depends on the relative sizes of & and g. Until recently all the cases had
asub-exponential complexity of type L{1/3}, similar to the factorization
problem. In 2013, Joux designed a new algorithm with a complexity of
L{1/4+¢€) in small characteristic. In the same spirit, we propose in this
article another heuristic algorithm that provides a quasi-polynomial com-
plexity when g is of size at most comparable with k. By gquasi-polynomial,
we mean a runtime of n®"°8" where n is the bit-size of the input. For
larger values of g that stay below the limit L «(1/3), our algorithm loses
51 _ _ its quasi-polvnomial nature, but still surpasses the Function Field Sieve,
Nicolas T. Courtois,
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Elliptic Curves

52
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Curves?

In analysis curves can be defined by continuous
parameterisations...

This continuous “close neighbourhood” approach does NOT work in finite fields (discrete points).

Curves are more generally defined by sets of points
which satisfy a certain systems of equations for
example f(X,Y)=0...

53
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Over Real Numbers
1 dim curve
In 2 dim space Q

some pairs (x,y)

R
belong /F’?<
to the curve
-
In practice the do w
NOT LOOK

like this!

54
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Over Finite Fields — Say Prime Fields

1 dlm curve EC y"2 = x"3 + 2% + 3 mod 263

I N T |

In 2 dim space 250 | o o SRR |

+ + + . . .
+
B —
200 + . + s
+
+
* +

some pairs (x,y)

belong
to the curve

+ o+ +
+ f * 4
+
- + B
150 |k . . .
+ + +
+
* +

+
+ n ++ "
+
+ o4 + + +
100 | ) N , et
* + + +
+ + + + + *

THEY RATHER

LOOK like this! N R
+Qpe point at infinity O, )
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b 4



OWEF Problem

We need a cyclic group EC y*2 = x"3 + 2x + 3 mod 263
which is “complicated” __ [ AR . . . ]
yet we can do o s

computations in it.

+ + T . + +
+
- -
200 + . v o4
+
+
+ +

[)(](:; 1EUF

+ +
+ + o+
+
= " . 1
n + +
— T +
- B —+ + +
— — +
L I ] * ;
* +
+ +
+ + +"‘ t +
t + 1
+
+ + LT +
+
+ o4 + + +
100 } ) . . e
+ n + +

+ + + + T *

p = prime o o
G = generator,,|. . - - . SRR
point e

20 100 150 200 250
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OWEF Problem

Stralg_gzt Order (a cycle) £ 2 o 43 1 2x 1 3 moct 263
“‘Complicated” Order [ -
200 -
[X]G 150 i
X=0...p-1
100 i
50 .
n | 1 | 1
o7 Nicolas T. Courtois, 2006-2014 0 50 100 150 200 250
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Elliptic Curves vs. RSA
Key Sizes

o8 Nicolas T. Courtois, 2006-2014



ECC Inventors

Neal Koblitz and Victor Miller,
independently, in 1985,

(proposed to do a DH in EC groups
=> whole of modern cryptography)

o9 Nicolas T. Courtois, 2006-2014



John Nash - 1955

In 2012 thﬁ PSA declassified his hand-written letter:

AT / g =

4, o P}-};Jfﬁv{sﬂr m)ecture_ s

oW S<— Foe almest @l shficedly —
<omgie X Fypes oF eaciphmmyt , espectally

o w}ﬂ,{,ﬂf_ -.?'_{'E P b g f

INSTEVEE fean g
?:,rf-.;-h . J:-";‘:‘:-HTI Pl oA Fhe k::),/
| i

N f&:ﬂ_.,._-'l‘* ;.r.,-.,qpllﬂ,'{ I;,r I.A_-'"l"H-"ﬁ. Enit Ofhe—

In e deflewmatye J{- fj-p:“_rf‘ I.ff’;f-rm.--r i
E:f\j—t::_ﬁ:;":l L T-L:' ‘h?' fﬁ'r—'ﬁjl‘?lﬂ

g the
M J.-‘l_-'.,g_.f-f; S the ‘_L-_“,D /!

[...] “It means that it is quite feasible to design ciphers that are effectively unbreakable.
As ciphers become more sophisticated the game of cipher breaking by skilled teams, etc., should

become a thing of the past.” [...] “The nature of this conjecture is such that | cannot prove it, even for a
special type of ciphers. Nor do | expect it to be proven.”
60
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ECC vs RSA

RSA: sub-exponential algos,

1024 bit keys provide only 80 bits of security with
NFS attack (a form of index calculus).

1986 Victor Miller claimed that:
“It is extremely unlikely that an ‘index calculus’ attack
on the elliptic curve method will ever be able to work."

In V. Miller: “Use of elliptic curves in cryptography“ 1986.

Best known attacks on general elliptic curves: 22,
160 bit ECC key = 1024 bit RSA key? Not exactly but close:

Nicolas T. Courtois, 2006-2014 m.
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192-bit ECC over prime field = 80-bit security =

RSA 1024 = "breakable today for the NSA”
ECC/RSA Key Size Comparisons

(FIPS 186-2, Lenstra/Verheul, NESSIE)

Security level | Block cipher | [, Fom RSA

in bits | p|| m 7|
SKIPJACK | 192 163
112 Triple-DES 224 233 2048
128 AES Small 256 283 3072

192 AES Medium| 384 409 7680
256 AES Large 521 571 15360




256-bit ECC over prime field = 128-bit security

= secure for 50 years in absence of Quantum Computers

ECC/RSA Key Size Comparisons

(FIPS 186-2, Lenstra/Verheul, NESSIE)

Security level | Block cipher | [, Fom RSA
in bits | p|| m 7|

80 SKIPJACK 192 163 1024

112 Triple-DES 224 233 2048
128 AES Small | (256 283
192 AES Medium| 384 409 7680

256 AES Large 521 571 15360
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ECC - Certicom Challenges [1997, revised 2009]

ECC2K-95 g7 18322 % 5.000

ECC2-97 a7 ‘ 180448 ‘ $ 5,000 |ECCp97 | 97 | 71952 | § 5,000
Chsdenge: | ¥eld Qe | Estamated mamber)| Drize Challenge | Field size | Estimated number | Prize
ECC2K-108 {uﬁ?} = ull&;mulliagaw sillijlhri‘fn U bits) | of wachine days | (USH)

Lo - x I T &
ECC2-109 109 2.1 x 107 $10.000 ECCp-109 109 9.0 x “i $10,000
ECC2K-130 | 131 2.7 % 10° $20,000 ECCp-131 131 2.3 x 10 $20,000
ECC2-131 131 6.6 x 101° $20,000
Challonge i T Bt T Dition Challenge | Field size | Estimated number | Prize
(in bits) of machine days | (US§) ST [m_l:?lm} of Lua-::zll;ue 1?&? {Uf?iﬂ

ECCOK-163 | 163 548 % 10 | $30,000 Clp-16: 33 -3 X 330,
ECC2-163 163 2.48 x 1015 | $30.000 ECCp-191 192 4.8 x 10' | $40,000
ECC2-191 191 .07 x 10' | $40,000 ECCp-239 | 239 1.4 > 10°7 | 850,000
ECC2K-238 | 239 6.83 x 10% | $50,000 ECCp-359 359 3.7 x 10 | $100,000
ECC2-238 239 6.83 x 1076 | $50,000
ECC2K-358 | 359 7.88 x 10M | $100,000
ECC2-353 359 7.88 x 10% | §100,000

TOTAL = 725,000 USD
:
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Bitcoin Elliptic Curve
secp256k1

65 Nicolas T. Courtois, 2006-2014



Bitcoin EC

We define a finite field F with 256-bit prime p=

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F =
115792089237316195423570985008687907853269984665640564039457584007908834671663

Arithmetic modulo p is quite efficient. p= 2256-232.9 Q77=2%+28+27+26+24+1),

The curve equation is

(very special, not like “normal” elliptic curves, smaliintegers only)

66 Nicolas T. Courtois, 2006-2014



Bitcoin EC

We define a finite field F with 256-bit prime p=

115792089237316195423570985008687907853269984665640564039457584007908834671663

The curve equation is

The base point G (generator) iS: (couid be any etement)
in compressed form is:

G =02 79BE667E FODCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798
In uncompressed form it is: G = 04
79BE667E FODCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798
483ADA77 26A3C465 5DA4FBFC OE1108A8 FD17B448 A6855419 9C47D08F FB10D4B8
or simply x,y are
x=55066263022277343669578718895168534326250603453777594175500187360389116729240
y=32670510020758816978083085130507043184471273380659243275938904335757337482424

67 Nicolas T. Courtois, 2006-2014 m.



Bitcoin EC

We define a finite field F with 256-bit prime p=

115792089237316195423570985008687907853269984665640564039457584007908834671663

The curve equation is

The base point G (generator) is:

G =02 79BE667E FODCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

The order of G is n=

115792089237316195423570985008687907852837564279074904382605163141518161494337

another 256-bit prime such that n.G=0.
BTW. All the points on the curve lie in <G>. #E(F,)=n

68 Nicolas T. Courtois, 2006-2014 m.
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What's Wrong
With Bitcoin Elliptic Curve?

69 Nicolas T. Courtois, 2006-2014
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ECC - Certicom Challenges [1997, revised 2009]

ECC2K-95 $ 5.000

97 ‘ 18322 ‘ 1 )

ECC2-97 a7 180448 $ 5,000 | ECCp-o7 | 97 | T1982 | $ 5,000

Challenge: | ¥Field .ﬂj'f"e Estimated n“l“h_“ P Challenge | Field size | Estimated number | Prize

ECCIK-108 {"335“} - ﬁﬂ;muﬁagﬂw silltjlhri‘fn U bits) | of wachine days | (USH)

OOk~ . 3 x 3 ; T

ECC2-109 109 2.1 % 107 $10,000 Maply] 109 X $10,000

ECC2K-130 | 131 2.7 x 109 $20,000 ECCp-131 131 2.3 x 10 $20.000

ECC2-131 131 6.6 x 101° $20,000

S T T R Challenge | Field size | Estimated number | Prize

r nge e S1Ee stimated num rize . . . L .

(in bits) of machine days | (US§) ST [m_l:?lm} of Lua-::zll;ue 1?&? gf?iﬂ

ECC2K-163 163 2.48 x 107 | $30,000 CCp-16: 3 e ,

ECC2-163 163 248 = 1015 $30.000 ECE]J—].{.H 192 4.8 x 10 $=1ﬂ,iH]ﬂ

ECC2-191 191 4.07 x 10" | $40,000 ECCp-239 | 239 L4 % 10°7 | $50,000

ECC2K-238 | 239 6.83 x 1026 | $50.000 ECCp-359 359 /‘ 3.7 = 10" | $100,000

ECC2-238 239 65.83 x 10°% | $50.000

ECC2K-358 359 T.88 x 10" | $100.000

ECC2-353 359 T.88 x 10" | $100.000 k

NOT INCLUDED
no price if you
break it ®
70
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Koblitz citation:

"Once | heard a speaker from NSA complain about university
researchers who are cavalier about proposing untested
cryptosystems. He pointed out that in the real world if your
cryptography fails, you lose a million dollars or your secret
agent gets killed.

In academia, if you write about a cryptosystem and then a few
months later find a way to break it, you've got two new
papers to add to your resume!”

Neal Koblitz,
Notices of the American Mathematical Society,
September 2007.
71
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k1 Promoters: Late Denial?

SECG = Standards for Efficient Cryptography group,

Industry consortium offspring of Canadian Certicom: the people
who proposed/promoted secp256k1 in the first place.

Their document claims that both offer the same level of security=RSA-3072

=> not even strictly true in current literature, k1 has a slightly faster attack, cf. Cryptrec report by Smart and Galbraith

Timely denial:
Dan Brown, the SECG chair has written on 18 September 2013:

-“l did not know that BitCoin is using secp256k1.
| am surprised to see anybody use secp256k1 instead of secp256r1”,

https://bitcointalk.org/index.php?topic=289795.80
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Comparison: )
TR [eeeeasekal T feecnzseit

Bitcoin, anonymous founder, no one to blame... Y

SEC Certicom Research now surprised Y

TLS, OpenSSL Y, ever used??? Y 98.3% of EC
U.S. ANSI X9.63 for Financial Services Y Y

NSA suite B, NATO military crypto

U.S. NIST

IPSec

OpenPGP

Kerberos extension
Microsoft implemented it in Vista and Longhorn
EMV bank cards XDA [2013]

German BSI federal gov. infosec agency, y=2015

< < < < < < < < <

French national ANSSI agency beyond 2020



TLS Adoption

7 % of TLS and 10% of SSH connections
use ECCs [December 2013].
98.3 % of these use secp256r1.

(no data reported on k1 counterpart, negligible or zero).

Source: Bos-Halderman-Heninger-Moore-Naehrig-
Wustrow, Paper= eprint/2013/734, slides=ask me.

Remark: Many SSL libraries such GnuTLS.org support only a subset of what OpenSSL does,
and they don’t support k1.

74
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Is k1 Weak?

75 Nicolas T. Courtois, 2006-2014



Weakness?

Bitcoin curve is characterized by the so called " 'small class number" which some
researchers suspect to be less secure than general curves, see Sections 5.1

and 5.3 in
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1029 report.pdf

All Koblitz curves have small class number.
In fact, the Koblitz curves in the SEC standard all have class number 1.

A STRONGER (more paranoid) requirement of having a large so called CM Field
Discriminant D to be |D|>2190, cf. http://safecurves.cr.yp.to/disc.html

The bitcoin elliptic curve has the LOWEST |D| of all known standardized elliptic
curves, and therefore it is potentially the least secure.

Such curves allow “slight speedups” for discrete log attacks however
"the literature does not indicate any mechanism that could allow further
speedups”.

76 Nicolas T. Courtois, 2006-2014 m.
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Wanna Bet?

Bitcoin Cryptography Broken in 2015

|

Category: Bitcein By 5@ NCourtols %k k& %k

@ Description

The digital signature scheme of bitcoin with SHAZR6+5ecp2 56kl ECDSA will be broken befare
1 September 2015 by cryptography researchers.

The attack should allow to forge digital signatures for at least a proportion of 1/1 million
kitcoin users and steal money from them.

It should be done faster than 24100 point additions total including the time to examine the
data.

® Decision Logic & bitcoin, aryptography, SHA258, ECOSA, ECOL, secp2sekl

&



Bitcoin Crypto Bets &

betmoose.com - Totally Anonymous Bets In BTC!

Bitcoin Cryptography Broken in 2015

Category: Bitcein By 5@ NCourtols %k k& %k ¥

@ Description

The digital signature scheme of bitcoin with SHA256+s2cp2b6kl ECDSA will be broken before
1 September 2015 by cryptography researchers.

The attack should allow to forge digital signatures for at least a proportion of 1/1 million
kitcoin users and steal money from them.

It should be donefaster than 24100 point additions total including the time to examine the
data.

YES A
R
LS e
Volume: | B0.140 Volume: : :
# of Bets: - # of Bets: 6
® Decision Logic B B 0.1 SHA258, ECOSA, ECOL, secp2bikl
PAY OUT RO PAY OUT RO
BO.0D OB BO.14327 43,270
" pzsurnes € umant waight andwolurnes " pzsurnes € umant weaight endwol urnes
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Computations on
Elliptic Curves

79 Nicolas T. Courtois, 2006-2014



Follow The Picture

Formulas for

point A Q
addition charp>2
X3 = }"2 — X1 — X2, H
Ya = (X1 - X3))‘ — Wi P
when x; # Xo we set -
N 2T )
Xo — Xy’ P+
W =x;and y; #0wes
see next-stide A:3x12+A
2y E:Y?=X3+AX+B

80 Nicolas T. Courtois, 2006-2C ‘ ‘



The Case of Doubling

Different A
formula for
point =
doubling P
\ tangentline >

when x; = x, and y; # 0 we set

=3x$+A/

2y
NOT a complete law! [2]
many spemal cases:

g7 Opt0 P+-P, y,=0

Nlcolas T. %ourtms 2056




dh

Groups and ECC

Special Cases => Not a “Complete Law”
fﬁézzf%%ﬂ?/y MF(EE;HEJ// fﬁﬁahj// P/f"ﬂhuf//
NS AN MY

P+Q+R=10 P+Q+0=0 P+Q+0=0 P+P+0=0

ol

tangent line tangent line

82
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RSA: exponentiation, modulo n

. e has k=log, n bits.

SQUARE AND MULTIPLY method:
Let e = 2._,2"e, be the binary expansion of e.
. Compute x, x2, x4, x8, ..., x2"k1),
. Multiply all those for which e=1.
Cost: about k S +k/2 M on average.

83 Nicolas T. Courtois, November 2006
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ECC: exponentiation, 2 moduli p,n

. e has k=log, n bits.

DOUBLE AND ADD method:
Let e = Z_,2Xe, be the binary expansion of e.
. Compute G, 2.G, 4.G,8.G,..., (2"k-1)).G
. Add all those for which e=1.
Cost: about k*cost(double) +k/2*cost(add) on average.

=>Can further save on additions, with a bit more of memory
(store more multiples, user larger ‘digits’ than 1 bit)

84 Nicolas T. Courtois, November 2006



Costs for ECC In “odd char” p

Point Addizu F,
» 6 Field Additions (Trivial)
» 3 General Field Multiplications SM+1lI
» 1 Field Inversion

11=10-100M

Point Doubling:
» 5 Field Additions (Trivial) AM+11
» 2 Scalar/Field Multiplications (Trivial)
» 4 General Field Multiplications

» 1 Field Inversion m.
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Projective Coordinates

X,y =>X,V,Z
avoids field inversions

Operation | Affine | Projective
Addition | 3M+ 11| 16M
Doubling | 4M + 11|  10M

86 Nicolas T. Courtois, 2006-2014



Edwards Coordinates [2007]

revisited by Bernstein and Lange

Welerstrass
Operation | Affine | Projective Edwards

Additon | 3M+ 11| 16M 10M
Doubling | 4M + 11| 10M 3M

87
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Edwards Coordinates
A

neutral = (0, 1) stk
P = (z1.91)
P = (z2,y2)
> T
P3 = (z3,y3)

\:1;2 +y® =1 —30z%y?
Sum of (z1,y1) and (z2,y2) is

((Z1y2+y122)/(1-30z1Z29172),
88 Nicolas T. CoL (y1y2 —$1$2)/(1+30$1$2y1y2))
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Edwards mod p [Bernstein-Lange version]
Choose an odd prime p. no special points

complete law!

Choose a non-square d € Fy,.

=> secure
against side-

{($, y) E Fp % Fp : channel attacks
z° + y% =1+ dz’y?}
IS a "‘complete Edwards curve”
(z1,91) + (22, 92) = (23, y3)

where
PROBLEM:
not every curve can be converted to Edwards curve, Z1 y2 —|' y]_ 4 1Y)
must have a point of order 4... 333 — ]
not for bitcoin curve k1 1 + dz 1T2Y1Y2_
never O

Y1Y2 — T1T2 /
39 Y3

Nicolas T. Courtois, 2006-2014 1 —dz 1Z2Y1Y2



Edwards Coordinates [2007]

actually invented by Bernstein and Lange

Welestrass
Operation | Affine | Projective Edwards

Additon | 3M+ 11| 16M 10M
Doubling | 4M + 11| 10M 3M

90 Nicolas T. Courtois, 2006-2014 m.
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Twisted Edwards — More Curves

Definition 6.1 (Twisted Edwards curve). Let F, be a finite field with char(F,) & {2, 3}
and let a,d € F} with a # d. Then, the twisted Edwards curve with coefficients a,d is

defined as:

BErad g X2 ¢ V= ] 4 d X2Y2 (6.4)

with j-invariant j(E*T%9) = 16(a® + 14ad + d*)*(ad(a — d)*) ™.

For a = 1 this coincides with the notion of ordinary non-binary Edwards curves.

no special points!
complete law!

i => secure
Ll||--3||||L||||_L||-i]-é—||||1||||2||---3|||||I aga|nsts|de_
N o IL - R channel attacks

.', zé II.-
A Twisted Edwards curve of eguation o

102* + y* = 1 + 62°%y°

91 Nicolas T. Courtois, 2006-2014
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M O re C U rVGS I More curves can be converted to twisted Edwards

PROBLEM: still not for bitcoin curve k1

a Montgomery curve over F, with
coefficients e, f € F, with e # 42, f # 0 is defined by the equation:

BMed . fY2 X3 reX?+ X,

Thm Cf. Christian Hanser thesis: New Trends in Elliptic Curve Cryptography,

o Bach twisted Edwards curve over F, with coefficients a,d € Fy, a # d is birationally
equivalent over F, to some Montgomery curve. The birational equivalence is defined

by the map:
$: EFred _| EMe.f
(zo,y0) +— (a(yo).xo-a(yo))
with a(y) = (1 + y)(1 —y)™! and coefficients a,d mapped to (e, f) = (2(a + d)(a —
d)~1,4(a — d)-L).

e On the flipside, each Monigomery curve over Fy with coefficients e € Fy \ {£2}
and f € Fy is birationally equivalent over Fy to some tmsted Edwards eurve. The
birational Eqmm!ﬁnce is defined by the inverse map ¢!

Ef}_l . Eﬂi,e,f _— EE'T.a..d
g i
(z0:%0) — (zowp > (zo—(zp+1)7)

92 Nicolas T. C  and the coefficients e, f are mapped to (a,d) = ((e +2)f~, (e — 2)f71).
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Twisted Edwards — More Curves

aX*+Y?=1+dX?Y?

Good news:
More curves can be converted to twisted Edwards
PROBLEM: still not for bitcoin curve k1

Vincent Verneuil paper: problem solved, but curves over GF(p”3)!
MOST elliptic curves need to be reformed,

NOT GOOD anymore. New curves to be used:
safecurves.cr.yp.to

93
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Edwards Curve Ed25519

“superfast, super secure ECDH”
HE(G)=8(2252+27742317777372353535851937790883648493)

D. J. Bernstein: Curve25519: new Diffie-Hellman speed records. In PKC 2006.

Ed25519 is used in Tor project, secure DNS, SSH
and much more...

94 Nicolas T. Courtois, 2006-2014
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ECDSA

95 Nicolas T. Courtois, 2006-2014



ECDSA

The Elliptic Curve Digital Signature Algorithm
* the elllptIC curve analogue of DSA/DS S-=outdated, 80-bit securiy.

. invented in 1992 by Scott Vanstone [died March 2014] in response to
a NIST request for public comments on their first proposal for DSS

Adoption:

. accepted in 1998 in ISO 14888-3

. accepted in 1999 by ANSI X9.62 Financial Institutions standard.
. accepted in 2000 to become IEEE 1363-2000 standard

. accepted in 2000 as a NIST FIPS 186-2 standard.

. since 2002 also in ISO 15946-2

. since 2005 crucial part of NSA suite B (not RSA)

96 Nicolas T. Courtois, November 2006 m.



ECDSA Signature Generation
To sign a message m, A does the following:

1. Select a random integer k£, 1 < k <n — 1.

2. Compute R = kP and r = z(R) mod n.
If » = 0 then go to step 1.

3. Compute k! mod n.
4. Compute e = H(m), where H is a hash function.

. CDH’IPUtE 5 = k_l(ﬂ 4+ G:T') mod 7. d=private key
If s =0 then go to step 1.

6. A's signature for the message m is (7, s).



ECDSA Signature Vertlf.

To verify A's signature (r, s) on m, B should do the following:

1. Verify that r and s are integers in the interval [1,n — 1].

. Compute e = H(m).

1 1

. Compute u1 = es™* mod n and u9 = rs~* mod n.

2
3
4. Compute R = u1 P + us@) and v = z(R) mod n.
5

. Accept the signature if and only if v = r.
r,-s also valid

08
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99

Dangers of ECDSA

ap
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Recall Sign. Generation
To sign a message m, A does the following:

1. Select a random integer k£, 1 < k <n — 1.

2. Compute R = kP and r = z(R) mod n.
If » = 0 then go to step 1.

3. Compute k! mod n.
4. Compute e = H(m), where H is a hash function.

. CDH’IPUtE 5 = k_l(ﬂ 4+ G:T') mod 7. d=private key
If s =0 then go to step 1.

6. A's signature for the message m is (7, s).
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Attack Vectors (0)

must be kept secret!
RNG .
side channel
d\ attacks/SPA/DPA
random a on the private key
R=a.P
r
s—
(H(m)+dr) / a — r. s)
mod n

101 Nicolas T. Courtois, November 2006 U
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Bad/Good RNG Attacks

1.
Bad RNG => the attacker CAN guess/brute force k. => recover private key

2

Bad RNG but attacker cannot guess it [e.g. obscurity]
=> there are still attacks (see next slides)!

3.
Good RNG but with side channels...

102 Nicolas T. Courtois, November 2006



Key Problem

should NEVER be revealed.

103

RNG

random a

R:a.P

g
v

S=

(H(m)+dr) / a}l— (r,S)

mod n

Nicolas T. Courtois, November 2006

If a Is revealed, the
private key can be
computed!

d=(sa-H(m))/r mod n
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Attack Vectors (1)

must be kept secret!
P used /dev/random
RNG or /dev/urandom
\ or MsWin32
random a CryptGenRandom
\ but OS/CPU has
R=a.P logged the seed!
r
S=

(HM)+dr) / a— (o)
mod n =)
104 Nicolas T. Courtois, November 2006 m.



Attack Vectors (2)

must be kept secret! i h |
sSide channe
/\/
RNG— attack/SPA:
a USB drive

randoma — " powered by the

\ PC has recorded
R=aP— \— the power

¥ consumption when

o generating/using a
(H(m)+dr) / a//\/

— (,S)
mod n _)
105 Nicolas T. Courtois, November 2006 @ m.




Attack Vectors (3)

must be kept secret! =>has happened 100s of times!

same a used twice =>
RNG e detected in public
\ blockchain =>
random a (s,a-H(m))Yd, = =
\ (s,a-H(m,))/d, mod n
R=a.P =>
vr r(dy-dy)+a(s;-sy)
S= =H(m,)-H(m,) mod n
(Hm)+dr) / al— (1.s) person can stea
mod n ’ other person’s bitcoins!

=>any of them CA}

106 ecompute k usec 3§ Tod
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Attack Vectors (3)

must be kept secret!

107

RNG |

random a

R:a.P

g
v

S=
(H(m)+dr) / a}l— (r,S)
mod n

Nicolas T. Courtois, November 2006

=>has happened a few times...

same a used twice by
thesame user (d,=d,).
In this case we have:
(s,a-H(my)) =rd =
(s,a-H(m,)) mod n

=> a=(H(my)-
H(m,))/(s;-S,) mod n
AND now
d=(sa-H(m))/r mod n

anybody can steal the bitcoinst
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Deterministic ECDSA!

Barwood-Wigley-Naccache-M’Raihi-Levy-dit-Vehel-Naccache-Pointcheval-Vaudenay-Katz-Wang etc...

108 Nicolas T. Courtois, 2006-2014



Deterministic ECDSA

. Avoids attacks with bad RNG.

. Very strong protection against NSA backdoors
such as hacking the RNG on the fly etc.

- Deterministic => do it twice with different implementations, compare result.

Solution:
. RFC6979
. In pycoin library tx.py program:

— uses a deterministic algorithm to create the ECSDA signatures, example to imitate.

109 Nicolas T. Courtois, November 2006
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RFC6979 [Pornin] = 5+ applications of HMAC
01....02%6” (1)0 .7!!f>6l<pr2/5|6| H(m) hitp://www.rfc-
y d < - = 00 00 editor.org/rfc/rfc6979.txt
01.,)..01 ' 256
256 HMAC_SI_V 256
K 256
e. ™ K
HMAC-SHA256
— 256
YII 01 [| Ky Il H(m) f — <
256 + 1 + 256 + 256 : K
HMAC-SHA256
- /K 756
g. M K*
HMAC-SHA256
! Ih M K
greves || HMAC-SHA256
for 256 bits outputk) <-———___ __ _ _ _ V{A
110 Nicolas T. Courtois, November 2006 2l5<6\~ ECDSA
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*HMAC-SHA256

Hashes twice with a key. [Ty x MESSAGE
1024 any
[363036 --363c26 |Ipd S|Ze
Definition (from RFC 2104 &) (xoR)
HMAC(K,m) = H ((K & opad)|l '

where

His a cryptographic hash function,

¥ 15 a secret key padded to the right with
the hash of the original key if it's longer tr @

mis the message to be authenticated,

[Scsese ... 80¢5csc |oPab

| denotes concatenation,

& denotes exclusive or (AOR), | 1024

5172

opad is the outer padding (Ox5cachc.. ac SHA-266
and radis the inner padding (0x5363636.

111 [ amacm
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