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Groups and ECC -

Evariste Galois

Very famous French mathematician.

. At age of 14 started reading very serious books papers about algebra
and mathematics.

. For reasons that are not fully explained failed all his exams to enter
Ecole Polytechnique and most of his brilliant work was published and
recognised only later.

. Did completely solve the problem of solvability of polynomial equations
in one variable: “Galois Theory”.

. Was a political activist, against the king of France, frequently arrested
and writing math papers while in prison.

. Died at the age of 20 after a fatal duel with an artillery officer, to some

in the context of a broken love affair, to some stage-managed by the
royalist fractions and the police.

He was the first to use the word Group.

3 Nicolas T. Courtois, 2006-2014 m.
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Group - Definition

A set M with an operation

e: MixM-> M such that:

1) Operation e is associative |
2) Has an identity element 1.
1ea=ae1=a
3) Each element a has an
inverse called a-'.

alea=ageal=1

Nicolas T. Courtois, 2006-2014
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Abelian == Commutative Groups

a+b = b+a

Nicolas T. Courtois, 2006-2014 mm
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Cyclic Groups

One element => generates the whole group.

Cs

Nicolas T. Courtois, 2006-2014
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Group — Example 1

Let n>=2.
{0,1,2,...,n-1},# mod n is a group.

Nicolas T. Courtois, 2006-2014
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Order of an Element

Order of an element g: ord(g) =
« the smallest integer such that gerd@=1.

Nicolas T. Courtois, 2006-2014
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Fermat’s Little Theorem
Pierre de Fermat [1601-16535]:

French lawyer and government official,
one of the fathers of number theory
(also involved in breaking enemy ciphers and codes).

Theorem: Let p be a prime.
For any integer aP=a mod p.
Corollary: If a=0 mod p, then aP'=1 mod p.

Nicolas T. Courtois, 2006-2014



Example 2.B.

{1,2,3}, " mod 4 is NOT a group.

Proof: 2 has no inverse.

10
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Group ?

{1,2,..,n-1}, *mod nis a group IF AND ONLY IF nis a
prime.

11 Nicolas T. Courtois, 2006-2014
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Rings

12
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Rings

“When two operations work together nicely” like + and *.

(R,+,%,0,1) is a Ring if:

« 0=1(not serious, avoids one “trivial” ring {0},+,%)
« R,+Is an Abelian group

« R\{0}, * is a monoid with identity element 1.

« " distributes over +:
a(b+c)=ab+ac
(b+c)a=ba+ca

13 Nicolas T. Courtois, 2006-2014
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Fields

In modern usage always commutative

14
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Fields [Abel, Galois]

2 added requirements:
. commutative
. each element a=0 has an inverse

Corollary: When p is prime, Z, is a field.

15
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Example 2.B.

({0,1,2,3}, + mod 4, * mod 4) is a ring.

It is NOT a field.
Why 7?

16 Nicolas T. Courtois, 2006-2014



Example 2.B.

({0,1,2,3}, + mod 4, * mod 4) is a ring.
It is NOT a field.

Why 7?
Proof: 2 has no inverse.

17 Nicolas T. Courtois, 2006-2014
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Fields vs. Rings

 |n afield we have all the 4 arithmetic operations
+,-!*!/'

 Inaring we do not have /.

18
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Finite Fields

19
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Question:
K=GF(p)=Z,, p prime.

For certain polynomials, Z [X] / P(X) is a field.

Theorem: If and only if P(X) is an irreducible
polynomial.

Irreducible == has no proper divisor of lower degree.

Note: p is called the characteristic of this field.
X+x+... ptimes = 0.

20 Nicolas T. Courtois, 2006-2014
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Theorem:

ALL FINITE FIELDS are of the form Z,[X] / P(X), with
D prime.

Corollary: the number of elements of
a finite field is always q=p™:
They are represented by all polynomials
a, +a, X'+ ... +a_ _, X",
corresponds to all possible n-tuples
(@g,aq, --. , 8n.q)-

21 Nicolas T. Courtois, 2006-2014



Cycling

In Z,we had aP = a [Fermat’s Little Thm.]

In any finite field F that has g elements
ad = a.

22 Nicolas T. Courtois, 2006-2014



Groups and ECC .

Theorem:

The multiplicative group of a finite field F is cyclic.

(in most cases false for Z_* in general)

There is a generator element g, called primitive element, such
that every element of the field F\{O} is a power of g.

(in fact there are MANY such elements).

23
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Theorem:

The multiplicative group of a finite field F is cyclic.

NOT OBVIOUS!

24
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DL Problems

25
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Various DL Problems

Discrete Logarithms
Given p, g, g and hfind x such that

h=g" (mod p)

where g is an element of order g in F),.

Elliptic Curve Discrete Logarithms
Given a curve E of order g over a field Fp, and two points P and Q

on the curve, find x such that
Q= [x]P.

26 Nicolas T. Courtois, 2006-2014



*Slides from Jan 2013

Can take any (finite) group.

Bad Choices:
» Additive group Z or Fg.
» Multiplicative group of or C.

Apparently Good Choices:

Finite fields F*. is it OK?

» Elliptic curves over finite fields.
» |deal class groups of number fields.
» Jacobian varieties of curves over finite fields.

27 Nigel Smart
N[&eIEEY]  Introduction to ECC Slide 5



Why NOT the cyclic group GF(p™)?

find x such that

h — g”" in GF(p™)?

kind of broken...

28 Nicolas T. Courtois, 2006-2014



DL in GF(p™) is Broken!

A quasi-polynomial algorithm for discrete
logarithm in finite fields of small characteristic

eprint/2013/400

Razvan Barbulescu!. Pierrick Gaudry!, Antoine Joux?3, and
Emmanuel Thomé!

* Inria, CNRS, University of Lorraine, France
? Cryptology Chair, Foundation UPMC = LIP 6, CNRS UMR 7606, Paris, France
* CryptoExperts, Paris, France

guasi-polynomial...

Abstract The difficulty of computing discrete logarithms in fields F
depends on the relative sizes of k and g. Until recently all the cases had
a sub-exponential complexity of type L{1/3), similar to the factorization
problem. In 2013, Joux designed a new algorithm with a complexity of
L{1/4 =€) in small characteristic. In the same spirit, we propose in this
article another heuristic algorithm that provides a quasi-polyvnomial com-
plexity when ¢ & of size at most comparable with k. By quasi-polynomial,
we mean a runtime of n®"®8" where n & the bit-size of the input. For
larger values of g that stay below the limit L i (1/3), our algorithm loses

29 _ _ its quasi-polynomial nature, but still surpasses the Function Field Sieve.
Nicolas T. Courtois,
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Elliptic Curves

30
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Groups and ECC =

Curves?

Curves: can be defined by sets of points which satisty
a certain systems of equations for example
f(X,Y)=0...

31 Nicolas T. Courtois, 2006-2014
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Curves Over Real Numbers
1 dim curve
In 2 dim space Q

some pairs (x,y)

R
belong [=)
to the curve
In practice the do @
NOT LOOK

like this!

Y

+one pointjat infinity O

Nicolas T. Courtois, 2006-2C “far away from y gxis”
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Over Finite Fields — Say Prime Fields

1 dlm curve EC y*2 = x"3 + 2x + 3 mod 263

I + | + 1 |
+

iIn 2 dim space 2s0f o o

+ + t + +
+ +
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- +
+
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OWF Problem

We need a cyclic group EC y"2 = x"3 + 2 + 3 mod 263
which is “complicated” __ [ T — 5 T . ]

yet we can do o s
computations in it. : '

+ + t + +
+ +
200 F + . -
- +
+
. -

+ + +
+ * .
+
+ + *
+ + + + * * + * .
+ + + +
s * + + + +
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+ +

+ -+
— +4 -
+ -+ + +
X— -— ) N
" m = +
* +
P + * + + + N +
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*
+ + +"' +
+
+ + 4 + * + T
100 | . s + + -
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+ + + + T

D = prime R ‘ e
G = generator,,| .- . - - . SRR
point e
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Groups and ECC

OWEF Problem

Straight Order (a cycle)
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Elliptic Curves vs. RSA
Key Sizes

36
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ECC Inventors

Neal Koblitz and Victor Miller,
iIndependently, in 1985,

(proposed to do a DH in EC groups
=> whole of modern cryptography)

37 Nicolas T. Courtois, 2006-2014



Code Breakers e

John Nash - 1955
In 2012 the NSA declassified his hand-written letter:
o N vy ol amecte. s a
h-?[m@' ':‘r'<5f;7; :}fﬂwsf* al| b#am{_ﬂp
J;ﬂ- +!yp€:, ‘"j{- Eﬂm y tg}?er.fm@/
o wjxﬁ*f_f-jfﬂ MioS v S touet s
;ﬂl"’f—i }7 Jif, A“-'*'f‘ fmi

A the  key
mixact E-w-ip"aﬂy with = each bthe—

m the detgwmateXf herr vl fimate.
Ef\f‘g;_;f-‘) v T;t ﬁm?:. e
'; ‘iw‘ wiﬂut [ !ﬁﬂﬂl«\ ~

f{ﬁ"t t"f"';; _;’/{ §

'

[...] “It means that it is quite feasible to design ciphers that are effectively unbreakable.
As ciphers become more sophisticated the game of cipher breaking by skilled teams, etc., should
become a thing of the past.” [...] “The nature of this conjecture is such that | cannot prove it, even for a

special type of ciphers. Nor do | expect it to be proven.”

38 Nicolas T. Courtois, 2012



Groups and ECC

Elliptic Curve Crypto

“exponential
security”

[ /P?F{
4

39
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ECC!

1986 Victor Miller claimed that:
“It is extremely unlikely that an ‘index calculus’ attack
on the elliptic curve method will ever be able to work.”

In V. Miller: “Use of elliptic curves in cryptography®, Crypto’85.

Best known attacks on general elliptic curves: 272,
160 bit ECC key = 1024 bit RSA key? Not exactly but close:

Nicolas T. Courtois, 2006-2014
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256-bit ECC over prime field = 128-bit security

= secure for 50 years in absence of Quantum Computers

ECC/RSA Key Size Comparisons

(FIPS 186-2, Lenstra/Verheul, NESSIE)

Security level | Block cipher | F,, Fom RSA
in bits pl | m | Il

80 SKIPJACK 192 163 1024

112 Triple-DES 224 233 2048
A28 AES Small | (256 283
192 AES Medium| 384 409 7680

256 AES Large 521 571 [15360




Crypto Currencies =

ECC - Certicom Challenges [1997, revised 2009]

ECC2K-95 | 97 ‘ 18322 ‘ $ 5,000
ECC2-97 o7 180448 $ 5,000 |ECCp97| 97 | 71982 l $ 5,000
s | TS | SHR e | S Challenge | Field size | Estimated number | Prize
ECC2K-108 {mlt};;m} = n;a;l:ufngm Stllghriu}n Jnbits) [ of wewldve dove | (L)
COK-1 , ‘ 0,01 -
ECC2-109 109 2.1 x 107 $10,000 BCLp-10 109 il $10,000
ECC2K-130 | 131 2.7 % 10° $20.000 ECCp-131 131 2.3 x 1019 $20,000
ECC2-131 131 6.6 x 101 $20,000
: . : _ Challenge | Field size | Estimated number | Prize
Challenge F%eld ISIEE Estlmatedlnumber Pr@e {i.u hit.s] i hine days {Uﬂﬁj
(in bits) of machine days | (US$) FOCo16 T 5 0™ | $30.000
ECC2K-163 | 163 248 x 10 | $30,000 P16 : e B
ECC2-163 163 2 48 % 1015 gaﬂﬁmn ECC]J—:I.{.'I 192 4.8 x 10 $—1ﬂ~ﬂﬂﬂ
ECC2-191 191 4.07 x 101 sm‘mn ECCP—ESQ 239 14 x 1'}2? $5ﬂ,[ﬁ]ﬂ
ECC2K-238 239 6.83 x 1026 | $50,000 ECCp-359 359 3.7 x 10% | $100,000
ECC2-238 239 6.83 x 10% | $50,000
ECC2K-358 359 7.88 x 10 | $100,000
ECC2-353 359 7.88 x 10" [ $100.000

TOTAL = 725,000 USD
.
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Bitcoin Elliptic Curve
secp256k1

43 Nicolas T. Courtois, 2006-2014



Bitcoin EC

We define a finite field F with 256-bit prime p=

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F =
115792089237316195423570985008687907853269984665640564039457584007908834671663

Arithmetic modulo p is quite efficient. p= 2256-232-9 Q77=2%+28+27+26+24+1),

The curve equation is

(very special, not like “normal” elliptic curves, smalti

jers only, one coeff=0)

44 Nicolas T. Courtois, 2006-2014



Bitcoin EC

We define a finite field F, with 256-bit prime p=

115792089237316195423570985008687907853269984665640564039457584007908834671663

The curve equation |

The base p0| nt G (generator) IS. (could be any element)
in compressed form is:

G =02 79BE667E FODCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798
In uncompressed form it is: G = 04
79BE667E FODCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798
483ADAT77 26A3C465 SDA4FBFC OE1108A8 FD17B448 A6855419 9C47D08F FB10D4B8
or simply x,y are
x=55066263022277343669578718895168534326250603453777594175500187360389116729240
y=32670510020758816978083085130507043184471273380659243275938904335757337482424

45 Nicolas T. Courtois, 2006-2014 m.



Bitcoin EC

We define a finite field F with 256-bit prime p=

115792089237316195423570985008687907853269984665640564039457584007908834671663

The curve equation i

The base point G (generator) is:
G =02 79BE667E FODCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

The order of G is n=
115792089237316195423570985008687907852837564279074904382605163141518161494337

another 256-bit prime such that n.G=0.
BTW. All the points on the curve lie in <G>. #E(F,)=n

46 Nicolas T. Courtois, 2006-2014
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What's Wrong
With Bitcoin Elliptic Curve?

47 Nicolas T. Courtois, 2006-2014



Crypto Currencies =

ECC - Certicom Challenges [1997, revised 2009]

ECC2K-95 | 97 ‘ 18322 ‘ $ 5,000
ECC2-97 o7 180448 $ 5,000 |ECCp97| 97 | 71982 l $ 5,000
s | TS | SHR e | S Challenge | Field size | Estimated number | Prize
ECC2K-108 {mlt};;m} = n;a;l:ufngm Stllghriu}n Jnbits) [ of wewldve dove | (L)
COK-1 , . 0,01 -
ECC2-109 109 2.1 x 107 $10,000 BCLp-10 109 il $10,000
ECC2K-130 | 131 2.7 % 10° $20.000 ECCp-131 131 2.3 x 1019 $20,000
EC(C2-131 131 6.6 x 101 $20,000
: . : _ Challenge | Field size | Estimated number | Prize
Challenge F%eld ISIEE Estlmatedlnumber Pr@e {i.u hit.s] i hine days {Uﬂﬁj
(in bits) of machine days | (US$) FOCo16 T 5 0™ | $30.000
ECC2K-163 | 163 248 x 10 | $30,000 P16 : e B
ECC2-163 163 2 48 % 1015 gaﬂﬁmn ECC]J—:I.{.'I 192 4.8 x 10 $—1ﬂ~ﬂﬂﬂ
ECC2-191 191 4.07 x 101 sm‘mn ECCP—ESQ 239 14 x 1'}2? $5ﬂ,[ﬁ]ﬂ
ECC2K-238 | 239 6.83 x 10% | $50,000 ECCp-359 | 359 f 3.7 x 10% | $100,000
ECC2-238 239 6.83 x 10% | $50,000
ECC2K-358 359 7.88 x 10 | $100,000
ECC2-353 359 7.88 x 10" [ $100.000

secp256k1

NOT INCLUDED
no price if you
break it ®

:
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Koblitz citation:

"Once | heard a speaker from NSA complain about university
researchers who are cavalier about proposing untested
cryptosystems. He pointed out that in the real world if your
cryptography fails, you lose a million dollars or your secret
agent gets Kkilled.

In academia, if you write about a cryptosystem and then a few
months later find a way to break it, you've got two new
papers to add to your resumeé!”

Neal Koblitz,
Notices of the American Mathematical Society,
September 2007.
49
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Official Bitcoin WiKki

https://en.bitcoin.it/wiki/Myths#Bitcoins _are worthless because they.27re based o
n_unproven_cryptography

“SHA256 and ECDSA which are used in Bitcoin are well-known industry
standard algorithms. SHA256 is endorsed and used by the US
Government and is standardized (FIPS180-3 Secure Hash Standard).

If you believe that these algorithms are untrustworthy then you should not
trust Bitcoin, credit card transactions or any type of electronic bank
transfer.”

Bitcoin has a sound basis in well understood cryptography.
Well...actually it has major bug in it.
= Major security scandal in the making?

= Expect a lawsuit for
— failing to adopt the crypto/industry best practices
— and for supporting a dodgy cryptography standard
— and lack of careful/pro-active/ preventive security approach etc...
— Blame Satoshi ©

Nicola
ST 50 *UCL




k1 Promoters: Late Denial?

SECG = Standards for Efficient Cryptography group,

Industry consortium offspring of Canadian Certicom: the people
who proposed/promoted secp256k1 in the first place.

Their document claims that both offer the same level of security=RSA-3072

=> not even strictly true in current literature, k1 has a slightly faster attack, cf. Cryptrec report by Smart and Galbraith

Timely denial:
Dan Brown, the SECG chair has written on 18 September 2013:

-“I did not know that BitCoin is using secp256k1.
| am surprised to see anybody use secp256k1 instead of secp256r1”,

https://bitcointalk.org/index.php?topic=289795.80

51 Nicolas T. Courtois, 2006-2014
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Comparison: &)
e e | jsecpRoeK1 T [seep2o6rt

Bitcoin, anonymous founder, no one to blame... Y

SEC Certicom Research now surprised Y

TLS, OpenSSL Y, ever used??? Y 98.3% of EC
U.S. ANSI X9.63 for Financial Services Y Y

NSA suite B, NATO military crypto

U.S. NIST

IPSec

OpenPGP

Kerberos extension
Microsoft implemented it in Vista and Longhorn
EMV bank cards XDA [2013]

German BSI federal gov. infosec agency, y=2015

< < < < < < < < <

French national ANSSI agency beyond 2020



TLS Adoption

7 % of TLS and 10% of SSH connections
use ECCs [December 2013].

98.3 % of these use secp256r1.

(no data reported on k1 counterpart, negligible or zero).

Source: Bos-Halderman-Heninger-Moore-Naehrig-
Wustrow, Paper= eprint/2013/7/34, slides=ask me.

Remark: Many SSL libraries such GnuTLS.org support only a subset of what OpenSSL does,
and they don’t support k1.

Nicolas T. Courtois, 2006-2014
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Groups and ECC =

Is k1 Weak?

54 Nicolas T. Courtois, 2006-2014



Groups and ECC -

Weakness?

Bitcoin curve is characterized by the so called ~“small class number" which some
researchers suspect to be less secure than general curves, see Sections 5.1
and 5.3 in
http://www.ipa.go.jp/security/enc/ CRYPTREC/fy15/doc/1029 report.pdf

All Koblitz curves have small class number.
In fact, the Koblitz curves in the SEC standard all have class number 1.

A STRONGER (more paranoid) requirement of having a large so called CM Field
Discriminant D to be |D|>2190, cf. http://safecurves.cr.yp.to/disc.html

The bitcoin elliptic curve has the LOWEST |D| of all known standardized elliptic
curves, and therefore it is potentially the least secure.

Such curves allow “slight speedups” for discrete log attacks however
"the literature does not indicate any mechanism that could allow further
speedups”.

55 Nicolas T. Courtois, 2006-2014 m.



Bitcoin Crypto Bets &

Wanna Bet?

Bitcoin Cryptography Broken in 2015

Category: Bitcoin By 5 NCourtols % k% %k _'5'

@ Description

The digital signature scheme of bitcoin with SHAZGG+secp2btk]l ECDSA will be broken before
1 September 2015 by cryptography researchers.

The attack should allow to forge digital signatures for at least a propartion of 1/1 million
bitcoin users and steal money from them.

It should ke done faster than 24100 point additions total including the time to examine the
data.

® Decision Logic &' bitcoin, aryptography, SHAZSE, ECOSA, ECOL, secp26kl

.



Bitcoin Crypto Bets &

betmoose.com - Totally Anonymous Bets In BTC!

Bitcoin Cryptography Broken in 2015

Category: Bitcoin By 5 NCourtols % k% %k _‘?

@ Description

The digital signature scheme of bitcoin with SHAZGG+secp2btk]l ECDSA will be broken before
1 September 2015 by cryptography researchers.

The attack should allow to forge digital signatures for at least a propartion of 1/1 million
bitcoin users and steal money from them.

It should ke done faster than 24100 point additions total including the time to examine the
data.

YES
Volume: | B 0.140 Volume:
# of Bets: | 3 # of Bets: | b
® Decision Logic B B 0.1 SHAZEE, ECOSA, ECOL, secp2bikl
PAY OUT R PAY COUT R
BO.OOD 0BG BO.14327 43 270
" pssumes £ ument waizht andwolurnes " pszurnes cument weight gnd wolumes

57 Place Anonymously Place Anonymously
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Computations on
Elliptic Curves

58
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Follow The Picture

Formulas for

point 4 Q
addition charp>2
X3 = N —Xx1—X, H
ya = (X1 —Xa)A — y; p
when x; # X, we set e

59 Nicolas T. Courtois, 2006-2C ‘ ‘



The Case of Doubling

Different A
formula for
point =
doubling P
\ tangentline >

when x; = X2 and y; # 0 we set

=3x$+,q/

2y
NOT a complete law! ] [2]
many special cases:

o Ogt0g, P+0g, P+-P, y,=0

Nlcolas T. ourt0|s, 20
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Groups and ECC

Special Cases => Not a “Complete Law”

([

i

A

VA

P+Q+R=0

61
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P+Q+Q=0

nt line

Nicolas T. Courtois, 2006-2014
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Groups and ECC =

RSA: exponentiation, modulo n

. e has k=log, n bits.

SQUARE AND MULTIPLY method:
Let e = X_,2Xe, be the binary expansion of e.
. Compute x, x2, x4, x8, ..., x2"(k1),
. Multiply all those for which e=1.
Cost: about k S +k/2 M on average.

62 Nicolas T. Courtois, 2006-2013



Groups and ECC -

ECC: exponentiation, 2 moduli p,n

. e has k=log, n bits.

DOUBLE AND ADD method:
Let e = X_,2Xe, be the binary expansion of e.
. Compute G, 2.G, 4.G,8.G,..., (2"k-1)).G
. Add all those for which e=1.
Cost: about k*cost(double) +k/2*cost(add) on average.

=>Can further save on additions, with a bit more of memory
(store more multiples, user larger ‘digits’ than 1 bit)
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Costs for ECC in “odd char” p

Point Addizu F
» 6 Field Additions (Trivial)
» 3 General Field Multiplications 3M+1l
» 1 Field Inversion

11=10-100M

Point Doubling:
» 5 Field Additions (Trivial) 4M+11
» 2 Scalar/Field Multiplications (Trivial)
» 4 General Field Multiplications
>

1 Field Inversion



Groups and ECC th

Projective Coordinates

X,y => X,Y,Z
avoids field inversions

Operation | Affine | Projective
Addition | SM+1l | 16M
Doubling | 4M + 11| 10M
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Groups and ECC -

ECDSA

66
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ECDSA

The Elliptic Curve Digital Signature Algorithm
. the elliptic curve analogue of DSA/DSS-outdated, 80-bit security.

. invented in 1992 by Scott Vanstone [died March 2014] in response to
a NIST request for public comments on their first proposal for DSS

Adoption:

. accepted in 1998 in ISO 14888-3

. accepted in 1999 by ANSI X9.62 Financial Institutions standard.
. accepted in 2000 to become IEEE 1363-2000 standard

. accepted in 2000 as a NIST FIPS 186-2 standard.

. since 2002 also in ISO 15946-2

. since 2005 crucial part of NSA suite B (RSA was not included!)
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ECDSA Signatures

Let d be a private key, integer mod n = ECC [sub-]group order.

Pick a random non-zero integer 0<a<n-1.

Compute R=a.P, where P is the base point (generator).
Let r = (a.P), be its x coordinate.
Lets=(H(m)+d*r)/a modn.

The signature of m is the pair (r,s).
(512 bits in bitcoin)



***ECDSA Signature Generation
To sign a message m, A does the following:

1. Select a random integer k, 1 < k <n — 1.

2. Compute R = kP and r = z(R) mod n.
If » = 0 then go to step 1.

3. Compute k! mod n.
4. Compute e = H(m), where H is a hash function.

5. Compute s = k(e + dr) mod n. d=private key
If s = (0 then go to step 1.

6. A's signature for the message m is (7, s).



***ECDSA Signature Verif.

To verify A's signature (7, s) on m, B should do the following:
1. Verify that r and s are integers in the interval [1,n — 1].

. Compute e = H(m).

1 1

. Compute u1 = es™* mod n and us = rs~* mod n.

2
3
4. Compute R = u1 P + w9 and v = z(R) mod n.
5

. Accept the signature if and only if v = r.
r,-s also valid

70

Nicolas T. Courtois, 2006-2013



71

Groups and ECC

Dangers of ECDSA
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Cryptographic Security of ECDSA in Bitcoin -

Recall Sign. Generation

Let d be a private key, integer mod n = ECC [sub-]group order.

Pick a random non-zero integer 0<a<n-1.

Compute R=a.P, where P is the base point (generator).
Let r = (a.P), be its x coordinate.
Lets=(H(m)+d*r)/a modn.

The signature of m is the pair (r,s).
(512 bits in bitcoin)



Groups and ECC

Attack Vectors (0)

must be kept secret!
RNG
side channel
9 attacks/SPA/DPA
random 4 on the private key
R=a.P
r
S_
(H(m)+dr)/a}l—
mod n o
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Bad/Good RNG Attacks

1.
Bad RNG => the attacker CAN guess/brute force k. => recover private key

2

Bad RNG but attacker cannot guess it [e.g. obscurity]
=> there are still attacks (see next slides)!

3.
Good RNG but with side channels...
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Key Problem

should NEVER be revealed.

75

RNG

random a

R=a.P

NP
\4

S:

(H(my+dr)/a|—

mod n

Nicolas T. Courtois, 2006-2013

A

If a Is revealed, the
private key can be
computed!

d=(sa-H(m))/r mod n




Attack Vectors (1)

must be kept secret!
P used /dev/random
RNG or /dev/urandom
or MsWin32
random a CryptGenRandom
but OS/CPU has
R=a.P logged the seed!
r
S:

(Hm)+dr)/a— ()
mod n 3
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Attack Vectors (2)

must be kept secret! q - |
Slde channe
/\/
RNG— attack/SPA:
a USB drive

randoma powered by the

PC has recorded
R=aﬂV\/ the power

r consumption when

§= generating/using a
(H(m)+dr) / a/A/S

(r,8)
mod n o
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Groups and ECC -

AttaCk - 2 UserS has also happened

100s times in Bitcoin
must be kept secret! qt 7 -
same a used twice =

s,a = rd,+H(m,) mod n
s,a = rd,+H(m,) mod n

=>
random a

R=3-P 1 linear (affine) equation,
r 2 private keys “alone”
alone= no other secrets
S:
(H(m)+dr) / a (L.S) ch person can@
o it ein]
mod n r person’s bitcoins

z



h

Groups and ECC

Attack Vectors (3) s aiso happened

100 times in Bitcoin
mustheer S;eﬂ/ same a used twice by
RNG the'same user (d,=d,).
In this case we have:
random a (sqa-H(my)) =rd =
(s,a-H(m,)) mod n
R=a.P =>a=(H(m,)-
r H(m,))/(s4-s,) mod n
S= AND now
(H(m)+dr) [al . (r S) d=(sa-H(m))/r mod n
mod n " anybody can steal the bitcoins
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Groups and ECC =

***Deterministic ECDSA!

Barwood-Wigley-Naccache-M’Raihi-Levy-dit-Vehel-Naccache-Pointcheval-Vaudenay-Katz-Wang etc...
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Deterministic ECDSA

. Avoids attacks with bad RNG.

. Very strong protection against NSA backdoors
such as hacking the RNG on the fly etc.

- Deterministic => do it twice with different implementations, compare result.

Solution:
. RFC6979
. In pycoin library tx.py program:

- uses a deterministic algorithm to create the ECSDA signatures, example to imitate.
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Groups and ECC

RFC6979 [Pornin] =

5+ applications of HMAC

http://www.rfc-

editor.org/rfc/rfc6979.txt

01....01 1100 [[ K.y, [ H(m)
256 + 1 + 256 + 256
01']..01 W <7l 205
ZK HMAC SI_'ZAEG%G
B
HIVIACI HA256
eV 2 \

256 + 1 + 256 + 256

YII O 1| Koy || H(m)

HIVIAC SHA256

S

I | h.

(normally a loop /
BUT not needed /

g. M “/r\
HMAC-SHA256 \
¥z .

HMAC- SHA256

for 256 bits output k) €————__
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Groups and ECC

“*HMAC-SHA256

Hashes twice with a key.

Definition (from RFC 2104 @)
HMAC(K,m) = H ((K @ opad)|l

where

His a cryptographic hash function,
¥ is a secret key padded to the right with |

the hash of the ariginal key if it's longer tk
mis the message to be authenticated,

| denotes concatenation,

& denotes exclusive or (<XOR),

ciad s the outer padding (OxScacsc.. o
and padis the inner padding (0x3635636.

83

| KEY K ] MESSAGE

1024 any

363636 -.-363626 |IPAd Si o

(o)

[ScScse .. 8¢scse [oPab

@

—t024 512~

| HmAc (m) ]
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84

Bitcoin ECC Endomorphisms
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Bitcoin EC

Base field = F with 256-bit prime p = 22°6-252-977

The curve equation i

The order of G is =

115792089237316195423570985008687907852837564279074904382605163141518161494337

another 256-bit prime such that q.G=0.

Nicolas T. Courtois, 2006-2014
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Special Multiples

Like “shortcuts in space”.

Fact: for the bitcoin elliptic curve
there exists MANY
special multiples (2 major ones in bitcoin)

such that:
Ax(x,y) = (C*x,¥)
3000 of us in general 0.2 ys general curve
100 us in bitcoin 0.04 ps bitcoin
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Bad News:

There excessively few such multiples.
Remark 1. If A works, A% also works.

Ax(x,y) = (0*x,Y)

Bad news: We have
A® =1nod g
There is exactly one non-trivial primitive root of

degree 6, other are more or less the same like:
1, -1, A —A, A—1=2A% —)\?
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Groups and ECC -

Existing Solutions
There exists A and { such that (V (x,y)eEC):

Ax(x,y) = (0*x,Y)

A is a primitive 6-th root of unity mod q, ( is a primitive
A=1and A #1andA? # 1 6-th root of unity mod p

9363ad4cc05c30e0a5261c028812645a122e22ea2 7ae96a2b657c07106e64479eac3434e99cf
0816678df02967c1b23bd73 0497512f58995¢1396¢c28719501ef
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Groups and ECC =

*Existing Solutions (twist 1)

There exists A and { such that:

A * (X,y) — (Z*X, _y)

A is a primitive 6-th root of 1 mod q ( is a (no longer a primitive)
6-th root
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Groups and ECC =

*Existing Solutions (twist 2)

There exists A" and ¢’ such that:

N (x,y) = (T *x,y)

A" is a primitive 3 root of 1 " is a primitive 3" root
5363ad4cc05¢c30e0a5261c028812645a122 7ae96a2b657c07106e64479eac3434e99cf
e22ea20816678df02967c1b23bd73-1 0497512f58995¢1396¢28719501ef-1
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Groups and ECC e

Extremely Few Such Points:

This probably at http://safecurves.cr.yp.to/disc.html we read:

Such curves allow “slight speedups” for discrete log attacks however
"the literature does not indicate any mechanism that could allow further
speedups”.

So until now this problem was not considered as very serious.
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