
Bitcoin Key Management:
HD Wallets, BIP032

Nicolas T. Courtois

- University College London, UK

Wallets and Key Management

2 ©Nicolas Courtois 2003-2014

BlockChain

Wallets and Key Management

3 ©Nicolas Courtois 2003-2014

Bitcoin Blockchain

Contains Digital Signatures for all transactions.

Moneys transmitted to some
H(Public Key) on 160 bits exactly.

Public key is NOT revealed in the process (90%)

– fact of enormous importance,
• this is how Satoshi “dodged” some future attacks!

• there are unhappy exceptions: coinbase transactions
usually are of type P2PK

Wallets and Key Management

4 ©Nicolas Courtois 2003-2014

Bitcoin BlockChain

Here transactions are
“written in stone”.

Wallets and Key Management

5 ©Nicolas Courtois 2003-2014

Bitcoin Mining

• Minting: creation of new currency.

• Confirmation+re-confirmation
of older transactions

Ownership:
– “policed by majority of miners”:

– only the owner can transfer

[a part of] 25 BTC produced.

HASH

must start with 64+ zeros

data from previous
transactions RNG

miner’s
public key

Wallets and Key Management

6 ©Nicolas Courtois 2003-2014

Good Practice:

• use each ECDSA public key only once!
– solid protection against bitcoin elliptic curve

being broken
• it will be broken in a 5-10 years from today (my prediction)

– bitcoin allows to protect your Public Key
– very surprising, security engineering, genius of Satoshi

– your PK should NOT be public,

– OK for keys no longer used

– very strong protection:

» even if the NSA can break secp256k1,
they cannot crack it in 1 second…

» also improves privacy [but not a panacea]

Wallets and Key Management

7 ©Nicolas Courtois 2003-2014

*Further Good Practice:

1. use each ECDSA public key only once!
– IN ADDITION:

2. store large amounts into many accounts
(tip: use standardized amounts)

– WHY?

– a) smaller targets,
• cost > profit for each attack…

• less visible targets

– b) weak keys,
• if we move 1M BTC all the time from one public key to

another, eventually one key could be weak…
• or “bad random” will be used which will betray this one key when used…

Wallets and Key Management

8 ©Nicolas Courtois 2003-2014

Consequences:

1. use each ECDSA public key only once!

Key management becomes a problem.

Old backups do not give access to all funds.

Etc…

A terrific new market for managing and
protecting cryptographic keys is emerging.

Wallets and Key Management

9 ©Nicolas Courtois 2003-2014

Bitcoin Network and Transfer

Wallets and Key Management

10 ©Nicolas Courtois 2003-2014

Separation?

It is possible to almost totally separate:

• Miner nodes
– Hashing with public keys

• Peer Nodes
– Relay and store transactions and blocks

• Wallet Nodes:
– Store and release funds,

– Focus on management of private keys, master
keys etc..

Wallets and Key Management

11 ©Nicolas Courtois 2003-2014

Tx LifeCycle

It is possible to almost totally separate:

• Miner nodes
– Hashing with public keys

• Peer Nodes
– Relay and store transactions and blocks

• Wallet Nodes:
– Store and release funds,

– Focus on management of private keys, master
keys etc etc.

tx

tx

public ledgerburn

CompSec Intro

12

*Why Separation

Separation makes a lot of sense in security engineering:

Principle of Separation of Privileges [Saltzer and Schroeder 1975]

Split software into pieces with limited privileges!

Very common in software engineering [but not yet in Bitcoin]:

• creating a child process,

• dropping privileges, etc.

Advantages:

 A successful exploit against the larger program will gain minimal
access.

 Different people can have access to these applications

 Pieces can run on distinct hardware (+different OS etc)!!!!!!

 Wallets do NOT need to be connected to the Internet (or only 1 way).

Wallets and Key Management

13 ©Nicolas Courtois 2003-2014

*Panic – May 2014
• # active nodes << #miners

• 5K << 100K

Wallets and Key Management

14 ©Nicolas Courtois 2003-2014

Wallets

• Wallet: file which stores your “money".

• A Bitcoin client App
is also called a wallet

CompSec Intro

15

Existing Wallets

bitcoin.org/en/choose-your-wallet

CompSec Intro

16

Future of Wallets

Further specialization…

Wallets and Key Management

17 ©Nicolas Courtois 2003-2014

In Practice

Wallets and Key Management

18 ©Nicolas Courtois 2003-2014

Full P2P Client
http://bitcoin.org/en/download

24 giga, 48 hours…

Wallets and Key Management

19 ©Nicolas Courtois 2003-2014

Mobile Apps - Android

Wallets and Key Management

20

Keys Trust
and Infrastructure

©Nicolas Courtois 2003-2014

Wallets and Key Management

21 ©Nicolas Courtois 2003-2014

New Infrastructure?
We have:

• “Symmetric Key Infrastructure”:
– like Kerberos [Unix, Windows]

• PKI = Public Key Infrastructure:
– like in TLS [current e-commerce]

– EU digital signature directive… SWIFT…

• “Keyless Infrastructure”:
– provides authenticity/certification services without secret keys!

– e.g. public append-only log such as bitcoin blockchain

=> All the 3 sorts of solutions can be combined BTW…

Wallets and Key Management

22 ©Nicolas Courtois 2003-2014

Master Keys
Common practice in the industry.

Avoids large databases
and update issues.

On this slide: how it is done
in symmetric cryptography.

MUCH more complicated with PK
crypto like in bitcoin.

EncryptK or Hash

session key
short-lived

long-term
shared key

K

IV / data

Wallets and Key Management

23

Engineering Tricks - Symmetric
Why in symmetric crypto we use session keys (short term keys):

• limit key exposure,
– in many systems (e.g. GSM) session keys are pre-computed in advance by a more secure part

of the system (!)

– bank card master key never used with data chosen by the user (foil DPA)

– forward security: cannot decrypt past communications if keys compromised

– they has 6 master keys…

• keys should be fresh in order to prevent reply of the messages from the last
session => total session independence

• cryptanalysis: security of symmetric crypto degrades with usage,

=> limit amount of data that the attacker can dispose of.

• better to re-establish keys when needed,

– avoid expensive storage of too many keys locally

• in PK case, it is in fact TOTALLY impossible to use PK crypto to encrypt
quantities of data, just too slow, so a symmetric key is always needed.

– one method to get it is key establishment, studied here later.

– second method is called hybrid encryption, e.g. in PGP / GNU PG.

Wallets and Key Management

24

Bitcoin?
Again:

MUCH more complicated with PK
crypto like in bitcoin.

Could implement arbitrary
structures with hierarchy
of privileges tasks roles etc…

NOT EASY

Fancy Crypto
Mechanism(s)

miner

CFO
master key

K2options

recipient trader

auditor

broker
custodian

sender

CSO
master key

K1

©Nicolas Courtois 2003-2014

Wallets and Key Management

*Warning
Possibly still NOT ideal (too centralized).
There could be other solutions

without permanent master privileges
which are a single point of failure.

Possible helpers:

Proof of stake, proof of work, smart cards etc…

master key(s)

©Nicolas Courtois 2003-201425

Fancy Crypto
Mechanism(s)

Wallets and Key Management

2outof3 [BIP16]

Bottom line:

Multisig are MUCH stronger than any
secret sharing
and any secret derivation mechanisms
and any HD wallets etc …

Current limitation 2outof3, will be out of 15 by the end of 2014?

Actually up to 8 out 15 already work, more or less, the are some
risks of not being able to spend later and losing money…

K3

K2

©Nicolas Courtois 2003-201426

K1

any 2

Wallets and Key Management

27 ©Nicolas Courtois 2003-2014

HD Wallets
Cf. Pieter Wuille video at Bitcoin 2013 Conference by Bitcoin Foundation, San Jose, CA, May 2013

https://www.youtube.com/watch?v=WcnMjkc31Fs

Wallets and Key Management

28 ©Nicolas Courtois 2003-2014

3 Types:

0. Use random keys=> Pb. with frequent backups.

1. Type 1 = Deterministic

2. Type 2 = Deterministic + “Magic” Audit Capability

3. HD Wallets = Hierarchical Deterministic
(a tree with several levels)

– BIP032: current standard with 4+ levels

Wallets and Key Management

29 ©Nicolas Courtois 2003-2014

Type 1 Wallets
Proposed by Greg Maxwell.

Simple:

• does not allow
“master public keys”

• there is only one chain of keys.

All private keys come
from one single secret seed. Type 1

Derivation:

SHA256(seed +n)

master
seed
stringnumber n

Private keynPublic Key n

Wallets and Key Management

30 ©Nicolas Courtois 2003-2014

Type 1 Wallets
Proposed by Greg Maxwell.

Simple:

• does not allow
“master public keys”

• there is only one chain of keys.

All private keys come
from one single secret seed. Type 1

Derivation:

SHA256(seed +n)

master
seed
stringnumber n

Private keynPublic Key n

access
needed

Wallets and Key Management

31 ©Nicolas Courtois 2003-2014

Idea of Type 2 Wallets
[Greg Maxwell, Pieter Wuille] - Has a sort of “master public key”

Public Type 2
Derivation

…

Private key(s) Public Key(s)

Private Type 2
Derivation

…

Private
SEED

Public
SEED

SK3 PK3

Wallets and Key Management

32 ©Nicolas Courtois 2003-2014

Key “Magical” Property =
both paths give the same keys.

Public Type 2
Derivation

…

Private key(s) Public Key(s)

Private Type 2
Derivation

…

Private
SEED

Public
SEED

SK3 PK3

“magic”
diagram

commutes

Wallets and Key Management

33

ONE METHOD to Achieve This Magic [Maxwell-Wuille]

PRIV,CHAIN
256+256

PRIV,CHAIN
256+256

used in
BIP032

Wallets and Key Management

34 ©Nicolas Courtois 2003-2014

Magic on
Several Levels

Wallets and Key Management

35

Better: Several Levels! = Hierarchical
=> the magic works over several levels, here 3 levels:

Public Type 2
Derivation

Private key(s) Public Key(s)

Private Type 2
Derivation

Private
SEED

Public
SEED

SK3 PK3

Public Type 2
Derivation

Private Type 2
Derivation

Private seed
WALLET7

Public seed
WALLET7

Wallets and Key Management

36

Magic = the Diagram Commutes:
all paths give the same public keys

Public Type 2
Derivation

Private key(s) Public Key(s)

Private Type 2
Derivation

Private
SEED

Public
SEED

SK3 PK3

Public Type 2
Derivation

Private Type 2
Derivation

Private seed
WALLET7

Public seed
WALLET7

Wallets and Key Management

37 ©Nicolas Courtois 2003-2014

Def: Sub-domains

Definition: We call a security sub-domain a set of all the
nodes in this DIRECTED graph above, on any side right/left,
with all the nodes and leaves BELOW one point/edge, in the
sense of the arrows, which corresponds to what can be
computed: lower level keys can be computed from higher
level, and public seeds CAN be computed from private
seeds, therefore if it is on the left it must also contain some
components to the right, but not vice-versa.

For example a domain under some index i on ANY side for
example m/1 (left) or M/0/1=N(m/0/1) (right).

Wallets and Key Management

38 ©Nicolas Courtois 2003-2014

Benefits

Wallets and Key Management

39 ©Nicolas Courtois 2003-2014

Audit Capability!

One of the main goals and benefits for Type 2.

The auditor can have ALL public keys
and yet no access to funds.

The price to pay is HIGH: more about it later...

Wallets and Key Management

40 ©Nicolas Courtois 2003-2014

E-Commerce Scenario
Major frequently cited application is e-commerce.

The receiver of moneys (say e-commerce website) has access
to many public keys only AND cannot spend any coins.

AGAIN:

The price to pay is HIGH: more about it later...

Wallets and Key Management

41 ©Nicolas Courtois 2003-2014

Anonymity!

Compute public keys directly:

Very good for privilege separation!

Better anonymity: a web shop
can use fresh public key
for each payment

 yet cannot steal the money

 again price to pay is HIGH…
cf. security study later…

Magical

Derivation

Private key(s)
Public Key(s)

Wallets and Key Management

42 ©Nicolas Courtois 2003-2014

Security of
Type 2 HD Wallets

(spec was revised,
most problems remain)

Wallets and Key Management

43 ©Nicolas Courtois 2003-2014

One Way Functions = OWF
no way to go backwards!

Public Type 2
Derivation

…

Private key(s) Public Key(s)

Private Type 2
Derivation

…

Private
SEED

Public
SEED

.G

OWF

SK3 PK3

OWF OWF

OWF

Wallets and Key Management

44 ©Nicolas Courtois 2003-2014

Key “Magical” Property =
both paths give the same keys.

Public Type 2
Derivation

…

Private key(s) Public Key(s)

Private Type 2
Derivation

…

Private
SEED

Public
SEED

OWF

SK3 PK3

“magic”
diagram

commutes

OWF OWF

OWF

Wallets and Key Management

45 ©Nicolas Courtois 2003-2014

Audit Capability => Danger

One of the main goals and benefits for Type 2.

The auditor can have ALL public keys
and yet no access to funds.

The price to pay is HIGH:
the auditor CAN when collaborating with 1 holder of private
key, recover LOTS of other private keys

[up to a total compromise of ALL master keys].

There exist alternatives!

=> Give the auditor lots of public keys, no harm possible ever!

Wallets and Key Management

46 ©Nicolas Courtois 2003-2014

E-Commerce Scenario?
Major frequently cited application is e-commerce.

The receiver of moneys (say e-commerce website) has access
to many public keys only AND cannot spend any coins.

AGAIN:

The price to pay is HIGH:
the e-commerce website can be hacked with SQL injection
or similar and the attacker CAN when collaborating with just
1 holder of private key, recover LOTS of other private keys

[up to a total compromise of ALL master keys].

Again a safer alternative is to give the e-commerce merchant
lots of public keys, no harm possible.

Wallets and Key Management

47 ©Nicolas Courtois 2003-2014

Key weakness

Wallets and Key Management

48 ©Nicolas Courtois 2003-2014

KEY WEAKNESS
two secrets reveal EVERYTHING!

Public Type 2
Derivation

…

Private key(s) Public Key(s)

Private Type 2
Derivation

…

Private
SEED

Public
SEED

SK3 PK3

KNOWING
BOTH

ALLOWS TO
GO BACK UP

OWF

Wallets and Key Management

49 ©Nicolas Courtois 2003-2014

Mathematical Formulation

F: S → X is a OWF

s x EASY

HARD

Wallets and Key Management

50 ©Nicolas Courtois 2003-2014

Mathematical Formulation

F: S → X is a OWF

G: S → K is a OWF

what about

(F,G): S → X x K

s x

k

Wallets and Key Management

51 ©Nicolas Courtois 2003-2014

Mathematical Formulation

F: S → X is a OWF

G: S → K is a OWF

(F,G): S → X x K
is NOT a OWF.

x x

k

Wallets and Key Management

52 ©Nicolas Courtois 2003-2014

Mathematical Formulation

F: S → X is a OWF

G: S → K is a OWF

NOT a OWF.

s x

k

KNOWING BOTH is fatal

Wallets and Key Management

53 ©Nicolas Courtois 2003-2014

Criticism of

Type 2 HD in Blogs
(spec was revised,
most problems remain)

Wallets and Key Management

54 ©Nicolas Courtois 2003-2014

Citation From BIP032
“ elliptic curve mathematics permit schemes where one can

calculate the public keys without revealing the private keys”

Really????

Yes, but it is not very secure…

Wallets and Key Management

55 ©Nicolas Courtois 2003-2014

ECC Magic
How can

“master public keys”

exist?

Compute public keys without
seeing the private keys?

Magical

Derivation

Private key(s)
Public Key(s)

Wallets and Key Management

56 ©Nicolas Courtois 2003-2014

ECC Magic – Basic Principle
How can

“master public keys”

exist?

“Key Homomorphism”

PrivateKey(type,n) = Master_private_key + H(n|S|type) mod q

PublicKey(type,n) = Master_public_key + H(n|S|type)*G

“Magic”

Private key(s)
Public Key(s)

S=
extra
secret

n

Wallets and Key Management

57 ©Nicolas Courtois 2003-2014

Leaks

Wallets and Key Management

Warning
The magic is NOT very good.

There are many compromise scenarios.

©Nicolas Courtois 2003-201458

Wallets and Key Management

Leaks Upwards?

Could one private key leak the MASTER private key???

In BIP032 problem is mitigated by additional secrets…

these are later called chain codes

 these are not so well kept secrets
 known to auditors for example,

 many of them will be known to many hot (exposed) web servers …

 etc.

©Nicolas Courtois 2003-201459

local

private

master

private
Remark: not quite true in BIP032, audit key also needed…

Wallets and Key Management

*Remark

Slides with * can be omitted

©Nicolas Courtois 2003-201460

Wallets and Key Management

*Serious Problem For Simplified Spec

Huge dangers with sharing private keys, ever,

 for example when funding your Mt Gox account with the
"Redeem private key“ option, it gives the key to Gox!!

 Pb: one private key compromises all, potentially!!!

(again one audit key also needed… not hard to get)

user Thanke in forum: Re: Deterministic wallets
October 02, 2012, 03:37:05 AM

The use scenario is that a “hot" machine (connected to the Internet
and potentially vulnerable) generates a chain of public keys, and
for that purpose stores Master_public _key as well as S.

In a reasonable threat model both values become available to an
attacker because the "hot" machine is vulnerable.

(continued next slide)

©Nicolas Courtois 2003-201461

local

private

master

private

Explanation: Here S=extra secret, in BIP032 it will be called a chain code and denoted by C

Wallets and Key Management

*Serious Problem For Simplified Spec
[…] stores Master_public _key as well as S[…]

[…] both values become available[…]

Since […] the serial numbers n and the type can be guessed,
a single leaked private key will leak Master_private_key as
well by a simple subtraction in the finite field underlying secp256k1.

©Nicolas Courtois 2003-201462

master

private

PrivateKey(type,n) = Master_private_key + H(n|S|type) mod q
PublicKey(type,n) = Master_public_key + H(n|S|type)*G

local

private

Wallets and Key Management

63 ©Nicolas Courtois 2003-2014

*BTW: It’s the same attack as before

Master_private_key Master_public _key, S

ki

KNOWING BOTH is fatal

Wallets and Key Management

*Serious Problem For Simplified Spec
both Master_public _key and S known

=>

a single leaked private key will leak Master_private_key

Conclusion: Users should be advised that ANY private key from the
generated key chain is to be secured with the same security level

as the master private key.

This seems to affect not only the implementation of deterministic
wallets in electrum and armory but also the hierarchical deterministic
wallets suggested in BIP 032s

[how? continued next page]:

©Nicolas Courtois 2003-201464

master

private

local

private

Wallets and Key Management

*Serious Problem For Actual BIP032!

THE SAME ATTACK still works.

©Nicolas Courtois 2003-201465

Wallets and Key Management

*Serious Problem For Old/Actual BIP032!

(quoting the spec of HID32 from elsewhere):

We define CKD((kpar,cpar),n) […]
takes a parent extended secret key (kpar,cpar) and a 32-bit integer n,

to produce a child extended secret key (kn,cn).

Call I = HMAC-SHA512(Key=cpar, Data=kpar*G || n), (512 bits)
where kpar*G is the public key corresponding to kpar,

|| is concatenation, n is 32 bits unsigned, most sign. byte first.

Split I into two 32-byte sequences, IL and IR.

• kn is equal to IL*kpar.

• cn is equal to IR.

There is also a version that operates on extended public keys instead of private ones:
(Kn,cn) = CKD'((Kpar,cpar),n):

Call I = HMAC-SHA512(Key=cpar, Data=Kpar || n), (512 bits)

Split I into two 256-bit 32-byte sequences, IL and IR.

• Kn is equal to IL*Kpar.

• cn is equal to IR.

©Nicolas Courtois 2003-201466

out of date, changed to+ 30 Apr 2013
but the attack works the same…

Wallets and Key Management

67 ©Nicolas Courtois 2003-2014

*again the same attack!

kpar Kpar,cpar

kni

KNOWING BOTH is fatal

Wallets and Key Management

*So What?
[…] "hot" machine of some main business wants to be able to

automatically generate extended public keys (Kn,cn). It needs to
store (Kpar,cpar) to do that.
Suppose it computes the corresponding extended secret key
(kn,cn) on a "cold" machine and hands it to the business' sub-
branch numbered n, so that the sub-branch can work
independently. Now, if the information (Kpar,cpar) stored on the
main business' "hot" machine leaks then the sub-branch
can obtain the main business master private key kpar
by these computations:

I = HMAC-SHA512(Key= cpar , Data= Kpar || n)

Split I into two 32-byte sequences, IL and IR

kpar = IL- 1 *kn (arithmetic in the finite field underlying secp256k1)

©Nicolas Courtois 2003-201468

local

private1

local

private2

master

private

PARENT PRIVATE KEY IS
REVEALED!

Wallets and Key Management

*So What?
Conclusion:

derived secret keys are handed over to sub-branches

=> the derived public keys MUST not be generated
on the fly on "hot" machines.

Instead, even Kpar must be stored " cold". To some extend this
contradicts the original idea of hierarchical deterministic wallets.

©Nicolas Courtois 2003-201469

local

private1

local

private2

master

private

Wallets and Key Management

Garzik

Jeff Garzik wrote [Dec 2012]:

In general, deterministic wallets (a) make life easier while
(b) increasing the security threat (e.g. decreasing overall security)

https://bitcointalk.org/index.php?topic=19137.msg1380099#msg1380099

©Nicolas Courtois 2003-201470

Wallets and Key Management

BIP032 Revisions

April 2013:
spec was revised:

• * replaced by+
– Obligatory upgrade, compatibility lost

• “hardened” derivation functions added
– optional, backwards compatible

©Nicolas Courtois 2003-201471

local

private

master

private

Wallets and Key Management

Hardened Versions

hardened version
locally removes the “magic on public keys”

More Secure?

Yes and no,

• they have several distinct domains/wallets/accounts which CAN BE
well insulated, only at places where hardened indexes are used

• but inside these domains there will be leakage, several levels up

More about security of hardened versions later…

©Nicolas Courtois 2003-201472

local

private1

master

private

local

private2

domain

private

harde
ned

versi
on

problems remain

Wallets and Key Management

73 ©Nicolas Courtois 2003-2014

Design and Evolution of

BIP032 Type 2 HD Wallets

Wallets and Key Management

74 ©Nicolas Courtois 2003-2014

Type 2 HD Wallets
Has

“master public keys”

Current solution:
BIP0032 [Pieter Wuille]

• multiple 4 or more levels

• extended secrets:
keys + chain codes c

• first we compare older and
new versions of it…

Type 2 HD
Derivation

…

master
seed S

128-512 bits

index i, Ex/In
keypair k

32+1+32 bits

Private key(s)Public Key(s)

MASTER
Public

MASTER
Private

MASTER
Chain code

Wallets and Key Management

75 ©Nicolas Courtois 2003-2014

Def. Extended Keys

Two 256-bit secrets.

Knowing just one is secret,
is not enough to reveal it.

Extended Private key = (key,chain).

Extended Public key = (Key,chain).

same.G

Neutered version,
cannot spend

Wallets and Key Management

76 ©Nicolas Courtois 2003-2014

Def. Extended Keys

Two 256-bit secrets.

Knowing just one is secret,
is not enough to reveal it.

Extended Private key

Extended Public key

k||c 256+256

k=xPrivate
256

c=xchain
256

L R

K||c 512+256

Kpublic
512

Kchain
256

L R

same.G

Wallets and Key Management

77 ©Nicolas Courtois 2003-2014

Extended Keys - Example

Uses Pycoin lib by Richard Kiss
>ku P:foo => produces two 111-digit base58 strings!!!!

wallet key:

xprv9s21ZrQH143K31AgNK5pyVvW23gHnkBq2wh5aEk6g1s496M8ZMjxncCKZKgb5j\

ZoY5eSJMJ2Vbyvi2hbmQnCuHBujZ2WXGTux1X2k9Krdtq

public version:

xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWoQayvtS\

VYFvXz2vPPpbXE1qpjoUFidhjFj82pVShWu9curWmb2zy

This example is continued in LATER slides…

Wallets and Key Management

78 ©Nicolas Courtois 2003-2014

BIP032 – 4 Levels

MASTER
PRIV,CHAIN
256+256

SUB-
MASTER
256+256

Wallets and Key Management

79 ©Nicolas Courtois 2003-2014

Generic Solutions

There are TWO!

• work across several levels

• allow audit

Wallets and Key Management

80 ©Nicolas Courtois 2003-2014

Two Solutions

There are two major “generic” solutions.

1. One uses * mod q and the fact that a.(b.G)=(a*b).G
– older proposal, used before 30 April 2013,

• probably still used by some software.

2. One uses + mod q AND the homomorphic property of the
EC: a.G+b.G=(a+b).G.
– the one which is standardized in BIP032 and massively used TODAY in

wallet software, cold storage solutions, bitcoin exchanges, bitcoin payment
acceptance and electronic commerce solutions etc..

Not sure that there exist any other solutions
(it is not trivial to design such systems).

Wallets and Key Management Generic Solution1

HM

yL yR

i

y

xchain

M

Kpublic || i

yPrivate
ychain

ECC

ciKi

K
Kpublic

KL KRxchain

Parent Ext. Public

right key
=ki.G

HM

yL yR

k i

y

kPrivate xchain

kL kR

xchain

M

Kpublic || i

yPrivate ychain

.G

mod q

ciki

Parent Ext. Private

K K

81

* *
scalar

Wallets and Key Management *Remarks Solution1

HM

yL yR

i

y

xchain

M

Kpublic || i

yPrivate
ychain

ECC

ciKi

K
Kpublic

KL KRxchain!

!

!

Parent Ext. Public

ci depends only
on public ext.key!!right key

=ki.G

HM

yL yR

k i

y

kPrivate xchain

kL kR

xchain

M

Kpublic || i

yPrivate ychain

.G

mod q

ciki

Parent Ext. Private

works because
(y*k).G=y.(k.G)

K K

same ci

82

* *
scalar

ki Ki

Wallets and Key Management Generic Solution2

HM

yL yR

i

y

xchain

M

Kpublic || i

yPrivate
ychain

ECC

ciKi

K
Kpublic

KL KRxchain

Parent Ext. Public

.G

right key
=ki.G

HM

yL yR

k i

y

kPrivate xchain

kL kR

xchain

M

Kpublic || i

yPrivate ychain

.G

mod q

ciki

Parent Ext. Private

K K

83

Wallets and Key Management ***Remarks Solution2

HM

yL yR

i

y

xchain

M

Kpublic || i

yPrivate
ychain

ECC

ciKi

K
Kpublic

KL KRxchain!

!

!

Parent Ext. Public

.G

sensitive value
revealed

ci depends only
on public ext.key!!right key

=ki.G

HM

yL yR

k i

y

kPrivate xchain

kL kR

xchain

M

Kpublic || i

yPrivate ychain

.G

mod q

ciki

Parent Ext. Private

homomorphic
pty ECC

K K

same ci

84

Wallets and Key Management

85 ©Nicolas Courtois 2003-2014

Attacks Sols1/2

Both have a similar
privilege escalation attack:

Auditor public extended key + 1 private key
=> can compute any other private key with a known
index/address

=> can compute ALSO the higher level private key k.

Wallets and Key Management

86 ©Nicolas Courtois 2003-2014

*Attack Sol1

Child2
Private

Child2
Public

PARENT
Private

PARENT
Public

PARENT
Chain code

PARENT
Chain code

Child1
Private

Child1
Public

k

K

c

c

y1*k y2*ky2.k.Gy1.k.G

Thm: One private key y1*k + auditor key
=> compute MASTER PRIVATE KEY k
=> any other private key y2*k.

Wallets and Key Management

87 ©Nicolas Courtois 2003-2014

*Attack Sol2

Child2
Private

Child2
Public

PARENT
Private

PARENT
Public

PARENT
Chain code

PARENT
Chain code

Child1
Private

Child1
Public

k

K

c

c

k+y1 k+y2k.G+y2.Gk.G+y1.G

Thm: One private key k+y1 + auditor key
=> compute the MASTER PRIVATE KEY k
=> any other private key k+y2.

Wallets and Key Management

88 ©Nicolas Courtois 2003-2014

Current Specific Solution BIP032
= Based on Method2

Wallets and Key Management

89 ©Nicolas Courtois 2003-2014

BIP032 Type 2 HD Wallets
More Detailed Study

“intended to be shared and used on several systems simultaneously”

Wallets and Key Management

90 ©Nicolas Courtois 2003-2014

Type 2 HD Wallets

Current solution:
BIP0032 [Pieter Wuille]

• At least 4 levels,

• extended secrets: keys on 256

+ chain codes c on 256 bits

• multiple key pair chains for each I

• 2 versions: normal and hardened (i≥231)

• slow hashing protects weaker seeds

Type 2 HD
Derivation

…

master
seed S

128-512 bits

index i, Ex/In
keypair k

32+1+32 bits

Private key(s)Public Key(s)

MASTER
Public

MASTER
Private

MASTER
Chain code

Wallets and Key Management

91 ©Nicolas Courtois 2003-2014

CKD functions

(there are 3 versions!)

Wallets and Key Management

92 ©Nicolas Courtois 2003-2014

HMAC-SHA512
Goal: avoids H(m||key) constructions

(which are subject to certain specific attacks)

1024

Wallets and Key Management

93 ©Nicolas Courtois 2003-2014

HMAC-SHA512 = separate RFC 4231
Hashes twice with a key.

512

512

1024

1024 +512

1024 +|M|

any size

©Nicolas Courtois 2003-2014

Wallets and Key Management

94

HMAC-SHA512 usage:
CDKprivH (hardened i ≥ 231)

HMAC-SHA512

yL yR

x 256+256 i 32

y 256+256

xPrivate
256

xchain
256

xL xR

xchain
256=>1024 bits

M 296 K 1024

0x00|| xPrivate||i
8+256+32=296 bits

yPrivate
256

ychain
256mod q

ci
256

ki
256

hardened
disables “homomorphic magic”
decreases the scope of “audit”

i ≥ 231

Parent Ext. Private

©Nicolas Courtois 2003-2014

Wallets and Key Management

95

HMAC-SHA512 usage:
CDKprivN (not hardened i<231)

y = HMAC-SHA512(
Key= xchain,
Data= xPubKey || i)

y has 512 bits = 2*256 bits

HMAC-SHA512

yL yR

x 256+256 i 32

y 256+256

derived

xPrivate
256

xchain
256

xL xR

xchain
256=>1024 bits

M 544 K 1024

xPubKey || i
512+32=544 bits

yPrivate
256

ychain
256

.G

mod q

ci
256

ki
256

i<231

Parent Ext. Private

ci depends only
on public ext.key!

©Nicolas Courtois 2003-2014

Wallets and Key Management

96

HMAC-SHA512 usage:
CDKpub not hardened ONLY i<231

y = HMAC-SHA512(
Key= xchain,
Data= xPubKey || i)

y has 512 bits = 2*256 bits

HMAC-SHA512

yL yR

i 32

y 256+256

direct
xchain

256=>1024 bits

M 544 K 1024

xPubKey || i
512+32=544 bits

yPrivate
256 ychain

256ECC

ci
256

Ki
256

K 512+256

Kpublic
512

KL KRxchain
256
!

!

!

i<231

Parent Ext. Public

.G

ci depends only
on public ext.key!!right key

=ki.G

©Nicolas Courtois 2003-2014

Wallets and Key Management

97

*On One Slide i<231

HMAC-SHA512

yL yR

i 32

y 256+256

xchain
256=>1024 bits

M 544 K 1024

xPubKey || i
512+32=544 bits

yPrivate
256 ychain

256ECC

ci
256

Ki
256

K 512+256

Kpublic
512

KL KRxchain
256

i<231

Parent Ext. Public

.G

right key
=ki.G

HMAC-SHA512

yL yR

x 256+256 i 32

y 256+256

xPrivate
256

xchain
256

xL xR

xchain
256=>1024 bits

M 544 K 1024

xPubKey || i
512+32=544 bits

yPrivate
256

ychain
256

.G

mod q

ci
256

ki
256

i<231

Parent Ext. Private

©Nicolas Courtois 2003-2014

Wallets and Key Management

98

*Comparison i<231

HMAC-SHA512

yL yR

i 32

y 256+256

xchain
256=>1024 bits

M 544 K 1024

xPubKey || i
512+32=544 bits

yPrivate
256 ychain

256ECC

ci
256

Ki
256

K 512+256

Kpublic
512

KL KRxchain
256
!

!

!

i<231

Parent Ext. Public

.G

ci depends only
on public ext.key!!right key

=ki.G

HMAC-SHA512

yL yR

x 256+256 i 32

y 256+256

xPrivate
256

xchain
256

xL xR

xchain
256=>1024 bits

M 544 K 1024

xPubKey || i
512+32=544 bits

yPrivate
256

ychain
256

.G

mod q

ci
256

ki
256

i<231

Parent Ext. Private

ci depends only
on public ext.key!

sensitive value
revealed

homomorphic
pty ECC

Wallets and Key Management

99 ©Nicolas Courtois 2003-2014

BIP032
Working Principle

Wallets and Key Management

100 ©Nicolas Courtois 2003-2014

Homomorphic Magic - works across several levels!
all i<231

CDKprivmod q

yL

3

CDKpubECC

yL.G

3

CDKprivmod q

yL

2

CDKprivmod q

yL

5

CDKpubECC

yL.G

2

CDKpubECC

yL.G

5

c3/2/5

m

m/3

m/3/2

m/3/2/5 M/3/2/5

M/3/2

M/3

M

c3/2/5

c3/2c3/2

c3c3

c
c

k K

k3

k3/5 K3/5

K3

K3/5/2
k3/5/2

S 128-512

256+256 512+256

256+256

256+256

256+256

512+256

512+256

512+256

Master
master

Wallet/
Account

Subwallet/
Chain

Keys NOT
USED!

NOT
USED!

Wallets and Key Management

101 ©Nicolas Courtois 2003-2014

Homomorphic Magic - works across several levels!
all i<231

CDKprivmod q

yL

3

CDKpubECC

yL.G

3

CDKprivmod q

yL

2

CDKprivmod q

yL

5

CDKpubECC

yL.G

2

CDKpubECC

yL.G

5

c3/2/5

m

m/3

m/3/2

m/3/2/5 M/3/2/5

M/3/2

M/3

M

c3/2/5

c3/2c3/2

c3c3

c
c

k K

k3

k3/5 K3/5

K3

K3/5/2
k3/5/2

S 128-512

256+256 512+256

256+256

256+256

256+256

512+256

512+256

512+256

Master
master

Wallet/
Account

Subwallet/
Chain

Keys

the diagram
commutes!

Wallets and Key Management

102 ©Nicolas Courtois 2003-2014

BIP032
Calculus

(remarkable identities)

Wallets and Key Management

103 ©Nicolas Courtois 2003-2014

Several Ways

Many extended public keys 512+256
have several ways to compute them!

N(m/a/b/c) = N(m/a/b)/c = N(m/a)/b/c =
N(m)/a/b/c = M/a/b/c

Effect of hardening:

N(m/aH/b/c) = N(m/aH/b)/c = N(m/aH)/b/c.

BUT

N(m)/aH is NOT defined!

Wallets and Key Management

104 ©Nicolas Courtois 2003-2014

BIP032
Details

Wallets and Key Management

105 ©Nicolas Courtois 2003-2014

BIP032 – 4 Levels

master
priv,chain
256+256

sub-master
256

functional sub-
domains

(security? later)

Wallets and Key Management

106 ©Nicolas Courtois 2003-2014

Step1

MASTER
Private

MASTER
Chain code

256 256

512

MASTER
Public .G

Wallets and Key Management

107 ©Nicolas Courtois 2003-2014

*Step 1
Q1: HMAC not needed (key=cst)

but seems correctly used
(a hash function would be OK)

Q2: this HMAC is a OWF!

I = HMAC-SHA512(Key=“Bitcoin seed”, Data=S),

512 bits = 2*256 bits

…

HMAC-SHA512
…

master
seed S

128-512 bits

MASTER
Private

MASTER
Chain code

Key= “Bitcoin seed”+padding

1024 bits

256 256

IL IR

MASTER
Public .G

K 1024 M 128-512

Wallets and Key Management

108 ©Nicolas Courtois 2003-2014

Step 2

WALLET
Private

WALLET
Chain code

256 256
WALLET
Public

512

CAN also be derived from
higher-level Public ext. Keys!

512

Wallets and Key Management

109 ©Nicolas Courtois 2003-2014

Step 3

512
512

Wallets and Key Management

110 ©Nicolas Courtois 2003-2014

Step 4

512
512

Wallets and Key Management

111 ©Nicolas Courtois 2003-2014

Step 4

512

internal/external
pair of chains
purely conventional 0/1, better
anonymity? => addresses on

one chain are shared and
disclosed, others belong to the
same owner but nobody knows

it… =>can return moneys to
ourselves on secret

addresses…

512

Wallets and Key Management

112 ©Nicolas Courtois 2003-2014

BIP032
Practical Example

Wallets and Key Management

113 ©Nicolas Courtois 2003-2014

Installing ku
1. Download and install Python 2.7 or 3.4, e.g.

https://www.python.org/ftp/python/3.4.1/python-3.4.1.msi for Win
*Under windows a working cygwin/gcc or Visual Studio nmake MIGHT be needed? Not sure. Probably not.

2. Install package setuptools:
– Windows: Run https://bootstrap.pypa.io/ez_setup.py

– Unix: wget https://bootstrap.pypa.io/ez_setup.py -O - | sudo python

3. Download pycoin: https://github.com/richardkiss/pycoin/archive/master.zip

4. Unpack in one directory (under W7 avoid protected dirs like Program Files)

5. Now sequence of build and install:
– Win: setup.py build

– setup.py install

– Unix: sudo python setup.py build

– sudo python setup.py install

6. cd to sub-directory .\build\lib\pycoin\scripts

7. To run type gewallet.py or ku.py
1. or python ku.py or just ku depending on OS..

Wallets and Key Management

114 ©Nicolas Courtois 2003-2014

Extended Keys - Example

Uses Pycoin lib by Richard Kiss
>ku P:foo => produces two 111-digit base58 strings!!!!

wallet key:

xprv9s21ZrQH143K31AgNK5pyVvW23gHnkBq2wh5aEk6g1s496M8ZMjxncCKZKgb5j\

ZoY5eSJMJ2Vbyvi2hbmQnCuHBujZ2WXGTux1X2k9Krdtq

public version:

xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWoQayvtS\

VYFvXz2vPPpbXE1qpjoUFidhjFj82pVShWu9curWmb2zy

Other examples (some don’t work on some machines):

https://github.com/richardkiss/pycoin/blob/master/COMMAND-LINE-TOOLS.md

Reference: Code with Other examples (some don’t work):

https://github.com/richardkiss/pycoin/blob/master/pycoin/scripts/ku.py

Out of date blog entry (many don’t work): http://blog.richardkiss.com/?p=313

Wallets and Key Management

115 ©Nicolas Courtois 2003-2014

Example Contd.
going 2 levels down in the tree:

genwallet -k
xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jPPqjiChk
VvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi -s 0/1

better method with reading from a file (should contain the same xprv… as above):

genwallet –f ext-master-private-key.txt -s 0/1 > ext-private-key_0_1.txt

both should give the same result = xprv9ww7sMF…

Same with ku?
FAILS on many machines all versions of Python, 'Wallet‘ not defined

ku .py
xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jPPqjiChk
VvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi -s 0/1

Wallets and Key Management

116 ©Nicolas Courtois 2003-2014

Contd. Private=>Public
Let ext-master-private-key.txt = contains=

xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jPPqjiChkVvv
NKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi

Now produce the public extended key

genwallet -f ext-master-private-key.txt -s 0.pub

OR what is the difference?)

genwallet -f ext-master-private-key.txt -s 0p.pub

FAILS! Broken software!

Error = “public key has no private parts”

Should work, cf. http://blog.richardkiss.com/?p=313

Wallets and Key Management

117 ©Nicolas Courtois 2003-2014

Example Contd.

Call:

ku P:foo -j -s2/1/3 -n BTC

This produces private and public keys at branch /2/1/3!

ku P:foo -P -j -s2/1/3 -n BTC

This produces public sub-key at branch /2/1/3!

IMPORTANT: this a BAD and INSECURE method,

it exposes the secret seed in ps and shell’s history!!!
(ps displays information about some active process)

Wallets and Key Management

118 ©Nicolas Courtois 2003-2014

Example Contd.

Or call:

ku
xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9i
EMQ31tgH6u4DLQWoQayvtSVYFvXz2vPPpbXE1qpjoUFid
hjFj82pVShWu9curWmb2zy -P -j -s2/1/3 -n BTC

FAILS for now… broken software…

NameError: name 'Wallet' is not defined

Again a BAD and INSECURE method,

it still exposes the public seed shell’s history!!!

Wallets and Key Management

119 ©Nicolas Courtois 2003-2014

Example Contd.

Store the long string SECURELY, and SUBSTRINGS

Then call (to be tested):

ku –f master-public-key.txt -P -j -s2/1/3 -n BTC

This produces public sub-key at branch /2/1/3!

FAILS… NO WAY TO INPUT A FILE FOR NOW

Better but still INSECURE method:

the file could be encrypted… Etc…

Wallets and Key Management

120 ©Nicolas Courtois 2003-2014

BIP032
Security

Wallets and Key Management

121 ©Nicolas Courtois 2003-2014

Leakage Danger?
all i<231

CDKprivmod q

yL

3

CDKpubECC

yL.G

3

CDKprivmod q

yL

2

CDKprivmod q

yL

5

CDKpubECC

yL.G

2

CDKpubECC

yL.G

5

c3/2/5

m

m/3

m/3/2

m/3/2/5 M/3/2/5

M/3/2

M/3

M

c3/2/5

c3/2c3/2

c3c3

c
c

k K

k3

k3/5 K3/5

K3

K3/5/2
k3/5/2

S 128-512

256+256 512+256

256+256

256+256

256+256

512+256

512+256

512+256

Master
master

Wallet/
Account

Subwallet/
Chain

Keys

Wallets and Key Management

122 ©Nicolas Courtois 2003-2014

Leaks?

Child
Private

Child
Public

PARENT
Private

PARENT
Public

PARENT
Chain code

PARENT
Chain code

Wallets and Key Management

123 ©Nicolas Courtois 2003-2014

Leaks!

Child
Private

Child
Public

PARENT
Private

PARENT
Public

PARENT
Chain code

PARENT
Chain code

Jail breaking, 1 level up!

BOTH

Wallets and Key Management

124 ©Nicolas Courtois 2003-2014

Q:
several levels up?

Wallets and Key Management

125 ©Nicolas Courtois 2003-2014

2 People => Total Compromise! of k,c

CDKprivmod q

yL

3

CDKpubECC

yL.G

3

CDKprivmod q

yL

2

CDKprivmod q

yL

5

CDKpubECC

yL.G

2

CDKpubECC

yL.G

5

c3/2/5

m

m/3

m/3/2

m/3/2/5 M/3/2/5

M/3/2

M/3

M

c3/2/5

c3/2c3/2

c3c3

c
c

k K

k3

k3/5 K3/5

K3

K3/5/2
k3/5/2

S 128-512

256+256 512+256

256+256

256+256

256+256

512+256

512+256

512+256

Master
master

Wallet/
Account

Subwallet/
Chain

Keys

Pb. known to

Wuille etc.

Wallets and Key Management

126 ©Nicolas Courtois 2003-2014

Hardening?

Wallets and Key Management

127 ©Nicolas Courtois 2003-2014

Hardnened At Places - not all i<231

CDKprivHmod q

zL

3H

CDKpubECC

yL.G

3H

CDKprivmod q

yL

2

CDKprivmod q

yL

5

CDKpubECC

yL.G

2

CDKpubECC

yL.G

5

c3/2/5

m

m/3

m/3/2

m/3/2/5 M/3/2/5

M/3/2

M/3

M

c3/2/5

c3/2c3/2

c3c3

c
c

k K

k3

k3/5 K3/5

K3

K3/5/2
k3/5/2

S 128-512

256+256 512+256

256+256

256+256

256+256

512+256

512+256

512+256

Master
master

Wallet/
Account

Subwallet/
Chain

Keys

3H=231+3

NOT
USED!

Wallets and Key Management

128 ©Nicolas Courtois 2003-2014

Hardnened At Places - not all i<231

CDKprivHmod q

zL

3H

CDKpubECC

yL.G

3H

CDKprivmod q

yL

2

CDKprivmod q

yL

5

CDKpubECC

yL.G

2

CDKpubECC

yL.G

5

c3/2/5

m

m/3

m/3/2

m/3/2/5 M/3/2/5

M/3/2

M/3

M

c3/2/5

c3/2c3/2

c3c3

c
c

k K

k3

k3/5 K3/5

K3

K3/5/2
k3/5/2

S 128-512

256+256 512+256

256+256

256+256

256+256

512+256

512+256

512+256

Master
master

Wallet/
Account

Subwallet/
Chain

Keys

3H=231+3

NOT
USED!

secured

master

Wallets and Key Management

129 ©Nicolas Courtois 2003-2014

Bad News: 2 People…

CDKprivHmod q

zL

3H

CDKpubECC

yL.G

3H

CDKprivmod q

yL

2

CDKprivmod q

yL

5

CDKpubECC

yL.G

2

CDKpubECC

yL.G

5

c3/2/5

m

m/3

m/3/2

m/3/2/5 M/3/2/5

M/3/2

M/3

M

c3/2/5

c3/2c3/2

c3c3

c
c

k K

k3

k3/5 K3/5

K3

K3/5/2
k3/5/2

S 128-512

256+256 512+256

256+256

256+256

256+256

512+256

512+256

512+256

Master
master

Wallet/
Account

Subwallet/
Chain

Keys

3H=231+3

NOT
USED!

secured

master

=N(m/3H)

Wallets and Key Management

130 ©Nicolas Courtois 2003-2014

Good News – Does NOT work

CDKprivHmod q

zL

3H

CDKpubECC

yL.G

3H

CDKprivmod q

yL

2

CDKprivmod q

yL

5

CDKpubECC

yL.G

2

CDKpubECC

yL.G

5

c3/2/5

m

m/3

m/3/2

m/3/2/5 M/3/2/5

M/3/2

M/3

M

c3/2/5

c3/2c3/2

c3c3

c
c

k K

k3

k3/5 K3/5

K3

K3/5/2
k3/5/2

S 128-512

256+256 512+256

256+256

256+256

256+256

512+256

512+256

512+256

Master
master

Wallet/
Account

Subwallet/
Chain

Keys

3H=231+3

=N(m/3H)

NOT
USED!

FAILS

Wallets and Key Management

131 ©Nicolas Courtois 2003-2014

The precise part which does NOT work

CDKprivHmod q

zL

3H

CDKpubECC

yL.G

3H

CDKprivmod q

yL

2

CDKprivmod q

yL

5

CDKpubECC

yL.G

2

CDKpubECC

yL.G

5

c3/2/5

m

m/3

m/3/2

m/3/2/5 M/3/2/5

M/3/2

M/3

M

c3/2/5

c3/2c3/2

c3c3

c
c

k K

k3

k3/5 K3/5

K3

K3/5/2
k3/5/2

S 128-512

256+256 512+256

256+256

256+256

256+256

512+256

512+256

512+256

Master
master

Wallet/
Account

Subwallet/
Chain

Keys

3H=231+3

 =N(m/3H)

NOT
USED!

FAILS

Wallets and Key Management

132 ©Nicolas Courtois 2003-2014

Lose Magic Audit Capability?
We don’t. Or it can be restored [new!].

Mix of key derivation and database approach is POSSIBLE!

Wallets and Key Management

133 ©Nicolas Courtois 2003-2014

*Recall: Sub-domains
Longer definition was given before

Definition: We call a security sub-domain a set of all the
nodes below one place on any side […]

e.g. a domain under m/1 (left)

or under M/0/1=N(m/0/1) (right).

Wallets and Key Management

134 ©Nicolas Courtois 2003-2014

Hardened =>
Hardened => Only certain sub-domains can be audited with 1 key.

Definition: We call an auditable sub-domain each domain
under the last hardened index i, for example N(m/aH/b/cH) is
the corresponding extended public sub-domain key.

(always on the right hand side in our earlier diagrams)
Note: it is assuming that all indexes below cH are NOT hardened, for example d<231.

Theorem: The auditor just needs to know the extended public
sub-domain key root for EACH auditable sub-domain
branch. For example both N(m/3H/any/1H) and N(m/2H).

again assuming that all indexes below these braches are NOT hardened.

Wallets and Key Management

135 ©Nicolas Courtois 2003-2014

Does it REPAIR Type 2 Wallets?
In one way it does.

However, in such systems there are still relatively valuable
keys: a hacker who steals 2 keys from 2 different places
CAN have access to lots of accounts with maybe tens of
millions of dollars.

A sensible policy would be to limit the total amount stored at
each auditable sub-domain branch as defined above.

=> The more we do it, the closer we get to the super-paranoid
solution: give the auditors ALL public keys
(larger database, harder to manage, update, add users,
fresh return addresses etc…).

Wallets and Key Management

136 ©Nicolas Courtois 2003-2014

The Converse Result

Theorem 2: In order to achieve total compromise of all keys,
the hacker needs to gather one private key from EACH
auditable sub-domain branch and one top-level audit key
from each branch.

Wallets and Key Management

137 ©Nicolas Courtois 2003-2014

Attacks
with INDIVIDUAL KEYS
and Without Auditors?

Wallets and Key Management

138 ©Nicolas Courtois 2003-2014

More Attacks?
Other attacks on HD Wallets?

• These would NOT involve auditors.

• They would one or several users with their legitimate private
and public keys.

• Could be much harder to detect:
– Powerful auditors can be suspected,

– HERE only a conspiring ORDINARY users

– Could be just running the same application,
• which also implements the attack…

Wallets and Key Management

139 ©Nicolas Courtois 2003-2014

More Attacks?
For now assume 2 users, SAME parent.

Say m/3/2/5 and m/3/2/6.

Wallets and Key Management

140 ©Nicolas Courtois 2003-2014

Attacks?
PARENT
Private

PARENT
Public

PARENT
Chain code

PARENT
Chain code

k

K

c

c

Claim: y1-y2 may be revealed <= 2 private keys

Child2
Private

Child2
Public

Child1
Private

Child1
Public

k+y1 k+y2k.G+y2.Gk.G+y1.G

Wallets and Key Management

141 ©Nicolas Courtois 2003-2014

Attacks?
PARENT
Private

PARENT
Public

PARENT
Chain code

PARENT
Chain code

k

K

c

c

Claim: y1-y2 may be revealed <= 2 private keys

Theorem 1. None of k,K,c,yL are EVER revealed!
Not even for more users.

Child2
Private

Child2
Public

Child1
Private

Child1
Public

k+y1 k+y2k.G+y2.Gk.G+y1.G

Wallets and Key Management

142 ©Nicolas Courtois 2003-2014

Further Results: [to be proven later…]
Theorem 2. If ECDL is hard + extra assumptions? =>

• Same parent, 2 children.
– any of 4 child keys=> master private k is never revealed

• proof: this would solve ECDL?

– any of 4 child keys=> master public K is never revealed
• proof??

– 2 public 1 private => cannot compute other private.
• proof??

– 2 private => can compute 2 public obviously

• Same parent, more children: same results

• Arbitrary HD Wallet with any number of levels, any mix of
low level and high level keys: cannot derive more than what
follows from 2 rules: auditor jail-breaking + down the graph.

Wallets and Key Management

143 ©Nicolas Courtois 2003-2014

Other Attacks?

Wallets and Key Management

144 ©Nicolas Courtois 2003-2014

Other Attacks?
1. Weak keys:

• Weak keys: imagine that the NSA can break 0.00001% of
all secp256k1 keys.

=>HD Wallets audit functionality
REVEALS ALL PUBLIC KEYS.

• if NSA can break just SOME of secp256k1 keys we are
toast.
– they will be able to select themselves which keys are “breakable”

and crack them: steal bitcoins.

• IN CONTRAST if bitcoin is used in a certain careful/secure
way, public keys are NEVER revealed in advance…

Wallets and Key Management

145 ©Nicolas Courtois 2003-2014

Practical Problems

Wallets and Key Management

146 ©Nicolas Courtois 2003-2014

Did We Receive Money?
If we give sb. some high-level extended PUBLIC key

(K+chain), we CANNOT know if money are received in sub-
wallets

• unless the number of accounts used is small (like small
integers).

• with 3 levels already 296 possible receiving accounts!

Crypto research question: Is it possible to create bitcoin addresses which can be cheaply checked if the belong to some tree?

Wallets and Key Management

147 ©Nicolas Courtois 2003-2014

Secure Solutions
= Leakage Resistance

Wallets and Key Management

148 ©Nicolas Courtois 2003-2014

Motivation
Most system seen so far are FRAGILE:

 One key can compromise all

 The more keys you have the more likely is that leakage of
"one which compromises all" WILL occur
 SCA,

 kleptography,

 bugs inside CPUs meant to help keys to leak…

 etc..

We need:

 Leakage resistance.

Wallets and Key Management

149 ©Nicolas Courtois 2003-2014

Solution
Gus Gutoski and Douglas Stebila:
Hierarchical deterministic Bitcoin wallets that tolerate key
leakage,
in Financial Cryptography 2015,

preprint at https://eprint.iacr.org/2014/998

"Our HD wallet can tolerate the leakage of up to m private keys
with a master public key size of O(m)".

