

Overview of Blockchain Security - in Crypto we Trust -

Nicolas T. Courtois

- University College London

Questions:

- How can a community of individuals can run a financial cooperative without being manipulated by powerful entities?
- Can we trust the source code and cryptography?

Anarchy? Dark Side

- In Bitcoin many things which are BUGS are presented as FEATURES:
 - monetary policy (or the lack of one) frequent criticism
 - problematic cryptography=
 - anonymous founder syndrome, standardized yet TOTTALLY disjoint from normal industrial cryptography, NOBUS syndrome (NSA jargon)
 - decision mechanisms (the Longest Chain Rule)
 - no reason why the same mechanism decides which blocks are valid and which transactions are valid, by far too slow, too unstable, too easy to manipulate

- 51% attacks ARE realistic feasible and ... INEXPENSIVE!
- sudden jumps in monetary policy => genetically-programmed selfdestruction of many crypto currencies
- See: Nicolas Courtois: On The Longest Chain Rule and Programmed Self-Destruction of Crypto Currencies <u>http://arxiv.org/abs/1405.0534</u>

3

Dangers of Open Source

- the open-source nature of the developer population provides opportunities for frivolous or criminal behavior that can damage the participants in the same way that investors can be misled by promises of get rich quick schemes [...]
- Cf. Vivian A. Maese: Divining the Regulatory Future of Illegitimate Cryptocurrencies, In Wall Street Lawyer, Vol. 18 Issue 5, May 2014.

4

Dr. Nicolas T. Courtois

 cryptologist and codebreaker

UNIVERSITY CIPHER CHAMPION

March 2013

2. payment and smart cards (e.g. bank cards,

Oyster cards etc...)

Oyster cracker vows to clone cards

Cloning kit could sell for just £200, says researcher

Robert Blincoe, vnunet.com, 28 Jul 2008

Crypto Currencies

Our Works on Bitcoin

-cf. also blog.bettercrypto.com

- -Nicolas Courtois, Marek Grajek, Rahul Naik: The Unreasonable Fundamental Incertitudes Behind Bitcoin Mining, <u>http://arxiv.org/abs/1310.7935</u>
- -Nicolas Courtois, Marek Grajek, Rahul Naik: Optimizing SHA256 in Bitcoin Mining, CSS 2014.
- -Nicolas Courtois, Lear Bahack: On Subversive Miner Strategies and Block Withholding Attack in Bitcoin Digital Currency <u>http://arxiv.org/abs/1402.1718</u>
- -Nicolas Courtois: On The Longest Chain Rule and Programmed Self-Destruction of Crypto Currencies <u>http://arxiv.org/abs/1405.0534</u>
- -Nicolas T. Courtois, Pinar Emirdag and Daniel A. Nagy: Could Bitcoin Transactions Be 100x Faster? In proceedings of SECRYPT 2014, 28-30 August 2014, Vienna, Austria.
- -Nicolas T. Courtois, Pinar Emirdag and Filippo Valsorda: Private Key Recovery Combination Attacks: On Extreme Fragility of Popular Bitcoin Key Management, Wallet and Cold Storage Solutions in Presence of Poor RNG Events, 16 Oct 2014, <u>http://eprint.iacr.org/2014/848</u>

-Poster: <u>http://www.nicolascourtois.com/bitcoin/POSTER_100x_Secrypt2014_v1.0.pdf</u>

My Blog and Bitcoin Events@UCL

blog.bettercrypto.com

blog.bettercrypto.com

icial Cryptography, Bitcoin, Crypto.... 🔂 6 📕 0 -🕂 New

FINANCIAL CRYPTOGRAPHY, BITCOIN, CRYPTO CURRENCIES

better cryptography, faster payments, better currencies, security, attacks, vulnerabilities

RESOURCES HOME SEMINAR EVENTS TOPICS ABOUT

New Powerful Attacks On ECDSA In Bitcoin Systems

Posted by admin on 23 October 2014, 10:57 pm

There is a wave of new powerful cryptographic attacks on bitcoin systems.

7

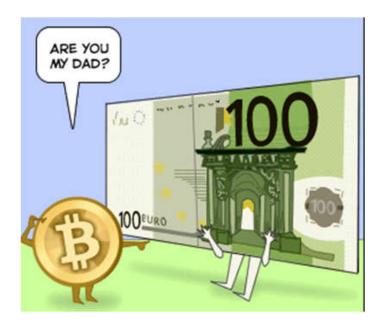
"Cryptographer's Dream"

• Building "trust-less" systems and a "trust-less" society.

8

"Cryptographer's Dream"

- Building "trust-less" systems and a "trust-less" society.
- How?
- Crypto "protocols" with several parties who do not know each other in advance and WITHOUT any trusted authorities:


lawyers, notaries, CAs, bankers, accountants, auditors, policemen, law makers, government officials, etc...

Modern cryptography makes such things possible...

Bitcoin

Bitcoin

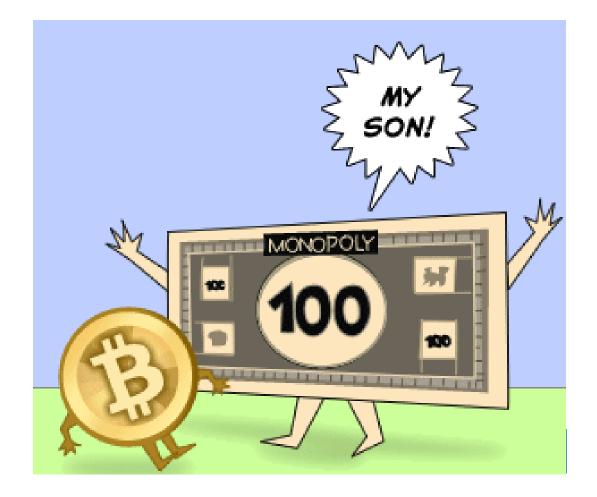
Based on cryptography and network effects.

Private money.

Bitcoin

Bitcoins are cryptographic money

- public ledger:
 - history shows how many bitcoins each user has
 - one user many accounts = pseudonyms



Are They Crazy?

Anything can be "money" if sufficiently many people accept it...

A question of:

• popularity

replaces the government-imposed standardization

• trust

E-Cash[Chaum'83] and Bitcoin[Nakamoto'08]

15 Nicolas T. Courtois 2009-2014

New Coins

initially X coins are attributed through **Proof Of Work (POW)** to one public key A

- to earn bitcoins one has to "work" (hashing) and consume energy (pay for electricity)
- do a difficult computation => you have earned 25 bitcoins
- works like a lottery (1 winner/10 minutes)

PK A

public ledger says H(PK A) has 1 BTC

New Coins

initially X coins are attributed through **Proof Of Work (POW)** to one public key A

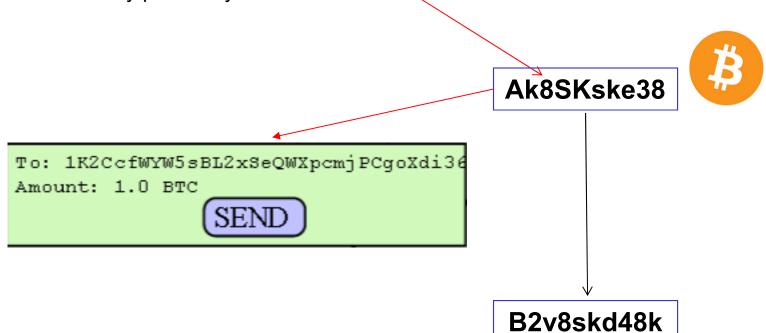
- to earn bitcoins one has to "work" (hashing) and consume energy (pay for electricity)
- do a difficult computation => you have earned 25 bitcoins
- works like a lottery (1 winner/10 minutes)
- *alternative solution:

bank/trusted authority/mintette can attribute coins initially

H(PK A) has 1 BTC

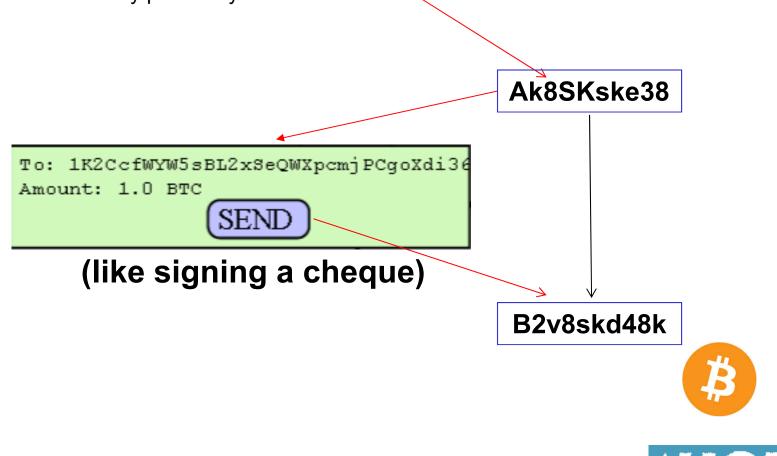
Authorizing Transfer of Coins

- you have a private key => you have the money (right to transfer)
 - money stored on PCs or mobile phones?
 - better solution: smart card



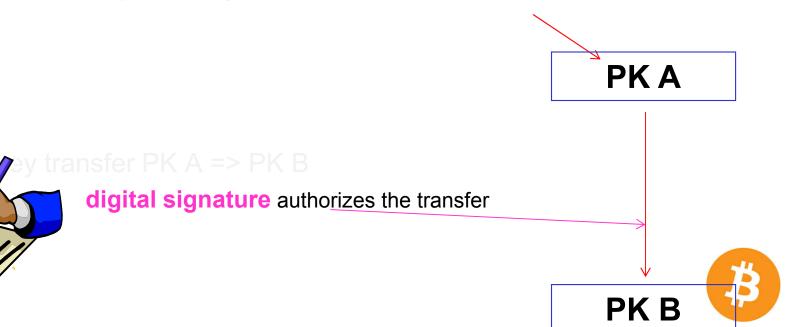
Bitcoins

- user has the right to transfer his bitcoins to any other user
 - user are known by their pseudonyms, H(PKeys)
 - one person => many pseudonyms / accounts



<u>
</u>

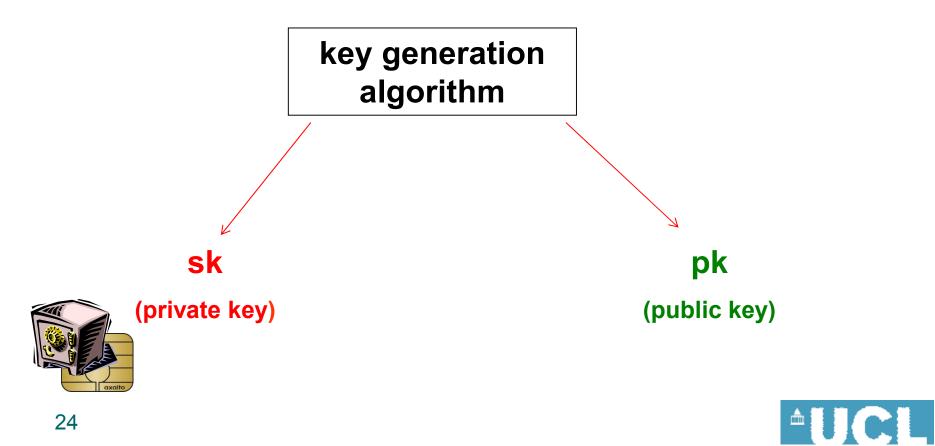
Bitcoins

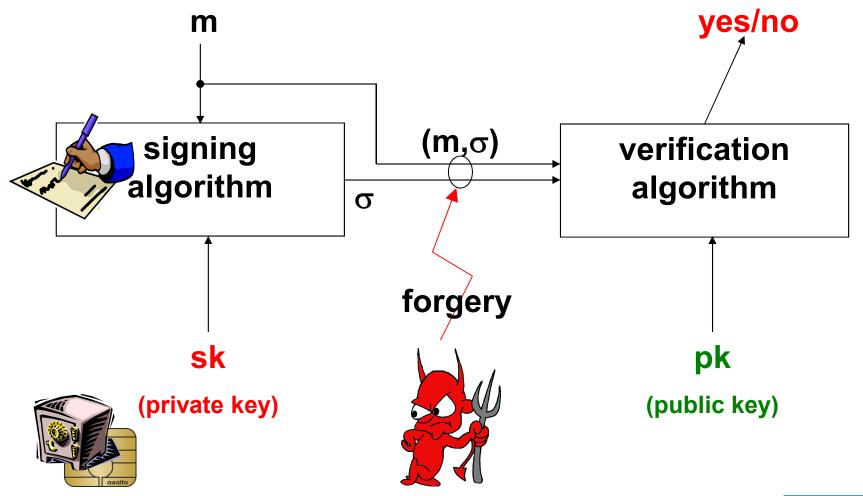

- user has the right to transfer his bitcoins to any other user
 - user are known by their pseudonyms, H(PKeys)
 - one person => many pseudonyms / accounts

Transfer of Coins

hard work => public key A

Digital Signatures


Digital Signatures


Digital Signatures

Idea: cryptographic solution 3 algorithms...

Digital Signature

2x Link

EU Directive 1999 => national laws...

e.g. UK Electronic Communications Act 2000 France: *article 1316-4 du code civil*

Signatures - Requirements

- Authenticity guarantees the document signed by...
- 2. Non-repudiation= Imputability
- **3.** BONUS:

Public verify-ability anyone can verify! 0. Completeness – honest signer always accepted
 1. Soundness – dishonest signer

always rejected

Secure Digital Signature

[Goldwasser-Micali-Rivest 1988] EUF - CMA (Existential Unforgeability under CMA)

1. Adversarial Goal.

Find any new pair (m,σ) (new m)!

- Resources of the Adversary: Any Probabilistic Turing Machine doing 2¹⁰⁰ computations.
- Access / Attack: May sign any message except one (target). (Adaptively Chosen Message Attacks).

Typical Signature \in Tx

sign+PKey

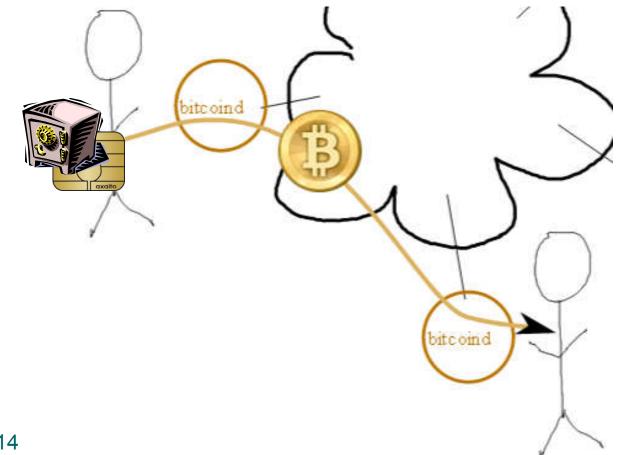
		scriptSig	
PUSHDATA 47		47	
signature (DER)	sequence	30	
	length	44	
	integer	02	scriptSig1 signature
	length		(r,s)
	×r	2c b2 65 bf 10 70 7b f4 93 46 c3 51 54 43 41 6f c4 54 61 8c 58 ec 0a 0f	
	integer	02	
	length	20	
	^Y S	5c 55 24 d7 52 al fc ef 45 18 28 4e ad 8f 08 57 8a c0 5b 13 c8 42 35 fl	55 4e 5a dl 5 8 23 3e 82
SIGHASH_ALL		01	
PUSHDATA 41		41	
public key	type	04	scriptSig2
	Х		55 P5k Q3 b2 d3 ee 75 13
	Y	10 f9 81 92 5e 53 a5 e8 c3 9b d7 d3 fe fd 57 5c 54 3c ce 49 3c ba c0 53	=(X,Y) 88 f2 65 ld la ac bf cd

Trust Less!

Digital Signatures ENABLE these TRUSTLESS systems!

Example: My bank card signs a transaction with RSA, the bank does NOT know the private key, ONLY the public key.

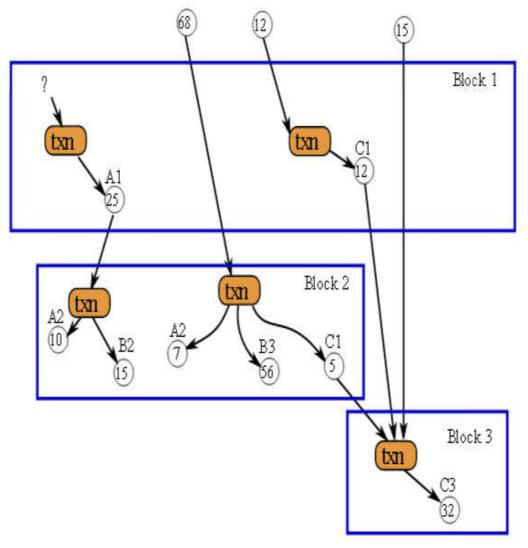
 \Rightarrow We do NO LONGER need to trust the bank.


 \Rightarrow The banker cannot forge transactions done with my card!

Bank Card => Bitcoin

Bitcoin is a "private" / decentralized descendant of the French bank card

Def:



Block Chain

Public transaction database or a ledger.

Every transaction since ever is public.

Each block contains a **Proof Of Work (POW)** (blocks are hard to make)

Multiple Confirmations

=>each new block confirms ALL previous events

Security:

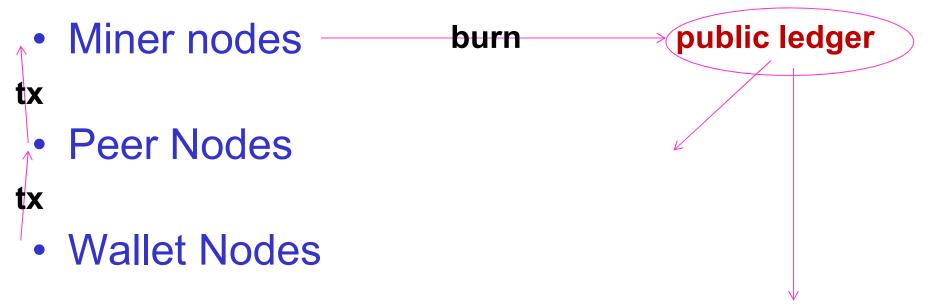
we do NOT need to assume that ALL people are honest.

- evidence piles up
- with time it becomes too costly to cheat

Bitcoin Network

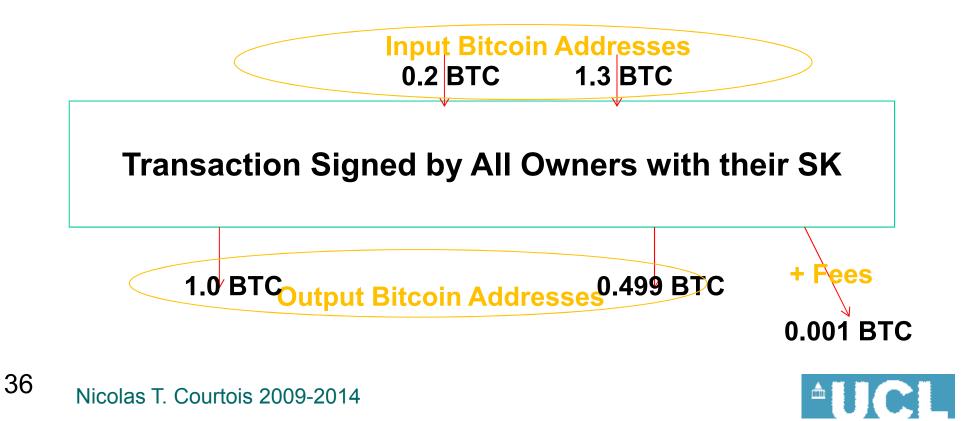
Three sorts of entities:

- Miner nodes 50K
 - Hashing with public keys
- Peer Nodes 5K
 - Relay and store transactions and blocks
- Wallet Nodes 5.5M, 0.25M active
 - store private keys

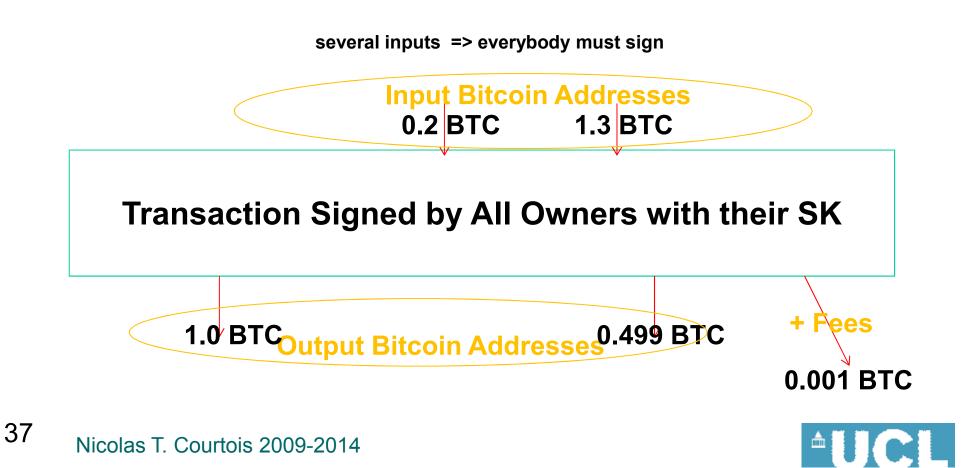


=>can spend the money

Tx LifeCycle



Bitcoin Transfer


Transactions have multiple inputs and multiple outputs.

Bitcoin Transfer

Transactions have multiple inputs and multiple outputs.

Multi-Signature Addresses

MultiSig = Addresses Starting with 3

Bitcoin can require simultaneously several private keys, in order to transfer the money.

- for example 2 out of 3 signatures are required to spend bitcoins.
- 3 keys can be stored on different devices (highly secure).
- can work without backups: if one device is lost, use other devices to transfer bitcoins to a new multisig address with another set of devices...

Is Bitcoin Secure?

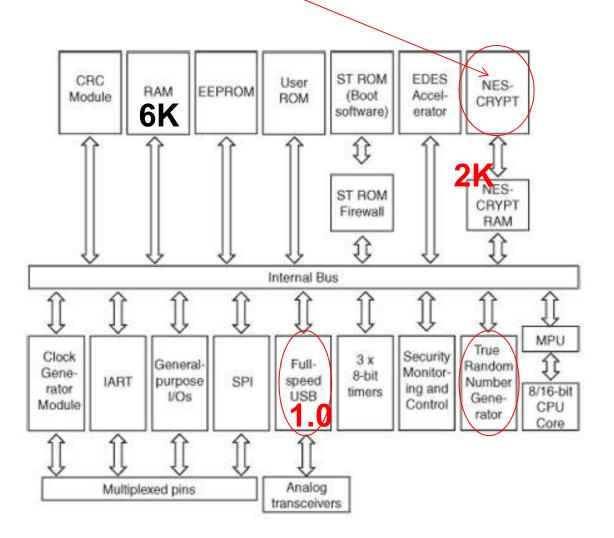
Satoshi claimed it is...

Wallets

41 Nicolas T. Courtois 2009-2014

Bottom Line

Main Functionality: -Private Key Generation -Export public key -ECDSA sign


Banking card platform ST23YT66

NESCRYPT crypto-processor for PK crypto-

900 ms for 1 ECDSA signature
900 ms for key gen
encrypts private keys on the card ('content' key) 3DES CBC

•content key can be protected with "a GlobalPlatform Secure Channel" authentication mechanism

43 Nicolas T. Courtois 2009-2014

Ledger Nano S [2016] vs. Trezor [older]

+ display: know to whom you send the money!
 +buttons to enter PIN/approve.

Bitcoin vs. Security Engineering

Re-Engineering Bitcoin:

We postulate:

1. Open design.

[Saltzer and Shroeder 1975]

- 2. Least Common Mechanism
- 3. Assume that attacker controls the Internet [Dolev-Yao model, 1983].
- The specification should be engineered in such a way that it is hard for developers to make it insecure on purpose (e.g. embed backdoors in the system).

Least Common Mechanism

Violated in Bitcoin with:

- Open SSL and other standard libraries with massive amounts of code which is not useful at all for bitcoin
- when using TOR
- with current consensus rules!!!!

Least Common Mechanism

Violated in Bitcoin:

http://video.ft.com/3667480923001/Camp-Alphaville-oncashless-society/Editors-Choice,

2 July 2014.

At minute 02.55: Dr. Nicolas Courtois of UCL:

"...One of the fundamental mistakes of bitcoin is that they use 'the Longest Chain Rule' to decide simultaneously which block gets accepted and which transactions get accepted, [...] a big mistake."

Open Design Principle

[Saltzer and Schroeder 1975]

Open Design ≠ Open Source

Examples: cryptography such as SHA256 (used in bitcoin) is open source but NOT open design – it was designed behind closed doors!

Citation

Bitcoin is:

• Wild West of our time [Anderson-Rosenberg]

ECC - Certicom Challenges [1997, revised 2009]

ECC2K-95 ECC2-97	97 97	18322 180448	\$ 5,000 \$ 5,000	ECCp-9
Challenge	Field size (in bits)	Estimated number of machine days	Prize (US\$)	Challenge
ECC2K-108 109 ECC2-109 109 ECC2K-130 131 ECC2-131 131		$\begin{array}{c} 1.3 \times 10^{6} \\ 2.1 \times 10^{7} \\ 2.7 \times 10^{9} \\ 6.6 \times 10^{10} \end{array}$	\$10,000 \$10,000 \$20,000 \$20,000	ECCp-109 ECCp-131
Challenge	Field size (in bits)	Estimated number of machine days	Prize (US\$)	Challenge
ECC2K-163 ECC2-163 ECC2-191 ECC2K-238	163 163 191 239	$\begin{array}{c} 2.48 \times 10^{15} \\ 2.48 \times 10^{15} \\ 4.07 \times 10^{19} \\ 6.83 \times 10^{26} \end{array}$	\$30,000 \$30,000 \$40,000 \$50,000	ECCp-163 ECCp-191 ECCp-239 ECCp-359
ECC2-238 ECC2K-358 ECC2-353	239 359 359	$\begin{array}{c} 6.83 \times 10^{26} \\ 7.88 \times 10^{44} \\ 7.88 \times 10^{44} \end{array}$	\$50,000 \$100,000 \$100,000	

ECCp-9	7 97	71982	\$ 5,000
Challenge	Field size (in bits)	Estimated number of machine days	Prize (US\$)
ECCp-109	109	$9.0 imes 10^6$	\$10,000
ECCp-131	131	2.3×10^{10}	\$20,000
Challenge	Field size (in bits)	Estimated number of machine days	Prize (US\$)
ECCp-163	163	2.3×10^{15}	\$30,000
ECCp-191	192	4.8×10^{19}	\$40,000
ECCp-239	239	$1.4 imes 10^{27}$	\$50,000
ECCp-359	359	$3.7 imes10^{45}$	\$100,000

Official Bitcoin Wiki

https://en.bitcoin.it/wiki/Myths#Bitcoins are worthless because they.27re based on unproven cryptography

- "SHA256 and ECDSA which are used in Bitcoin are well-known industry standard algorithms. SHA256 is endorsed and used by the US Government and is standardized (FIPS180-3 Secure Hash Standard).
- If you believe that these algorithms are untrustworthy then you should not trust Bitcoin, credit card transactions or any type of electronic bank transfer."

Bitcoin has a sound basis in well understood cryptography.

Official Bitcoin Wiki

https://en.bitcoin.it/wiki/Myths#Bitcoins are worthless because they.27re based on_unproven_cryptography

"SHA256 and ECDSA which are used in Bitcoin are well-known industry standard algorithms. SHA256 is endorsed and used by the US Government and is standardized (FIPS180-3 Secure Hash Standard).

If you believe that these algorithms are untrustworthy then you should not trust Bitcoin, credit card transactions or any type of electronic bank transfer."

Bitcoin has a sound basis in well understood cryptography.

Well...actually it has major bug in it.

- \Rightarrow Major security scandal in the making?
- \Rightarrow Expect a lawsuit??? for
 - failing to adopt the crypto/industry best practices,
 - for supporting a dodgy cryptography standard,
 - not giving users worried about security any choice,
 - and lack of careful/pro-active/ preventive security approach etc...
 Blame Satoshi ©

Dan Brown, chair of SEC [Certicom, Entrust, Fujitsu, Visa International...]

"I am surprised to see anybody use secp256k1"

September 2013,

https://bitcointalk.org/index.php?topic=289795.80

52

What If? CataCrypt Conference

← → C 🗋 catacrypt.net/program.html

Workshop on catastrophic events related to cryptography and their possible solutions

Technical Program

Home

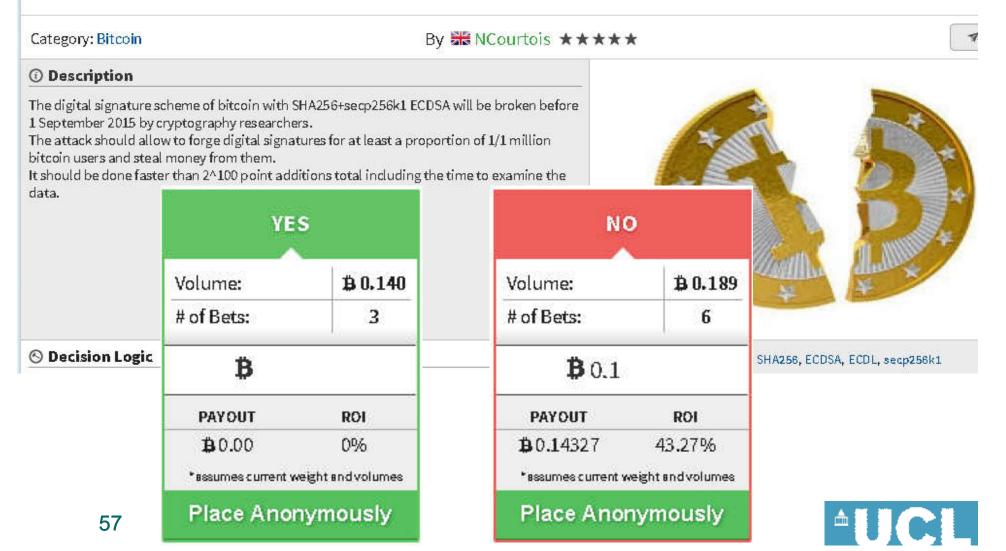
Committees

Call for contributions

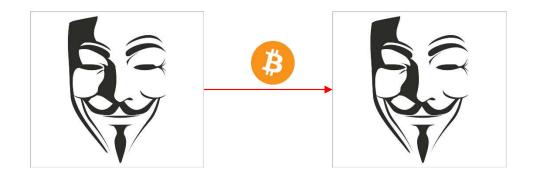
Program (schedule)

Venue: Grand Hyatt San Francisco, Union Square, 345 Stockton Street, downtown San Francisco: room Fillmore A - Theatre Level <u>http://grandsanfrancisco.hyatt.com</u> October 29, 2014 (together with <u>IEEE Conference on Communications and Network Security (CNS</u>)

Opening Remarks: Jean-Jacques Quisquater (UCL, Belgium)

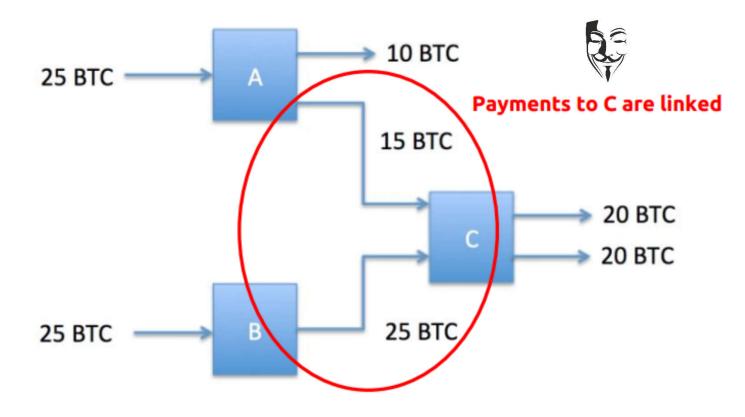

Bitcoin Crypto Bets

BetMoose


Wanna Bet?

Bitcoin Cryptography Broken in 2016

anonymous payments

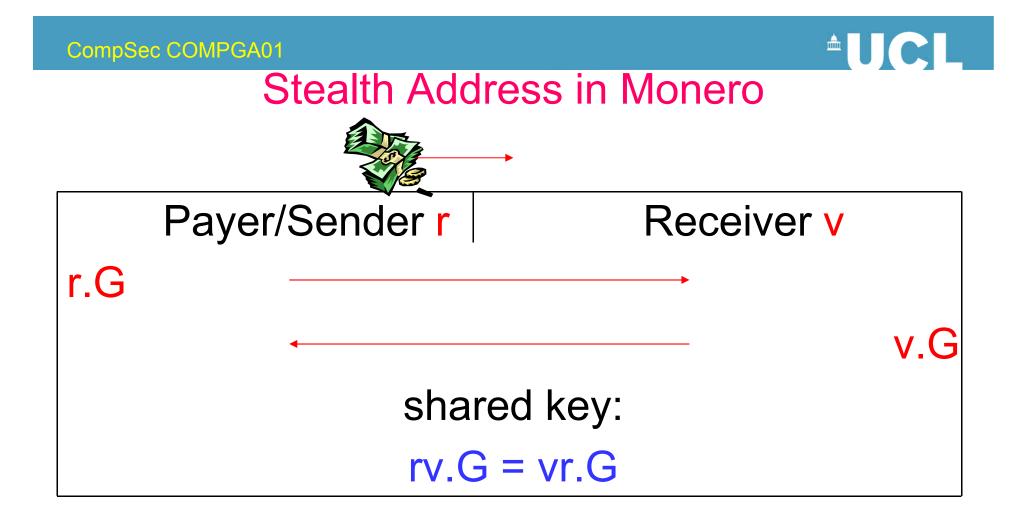


not only about Monero potentially also for bitcoin (permission-less)

Bitcoin and Linakability

Q: Does Monero remove this????

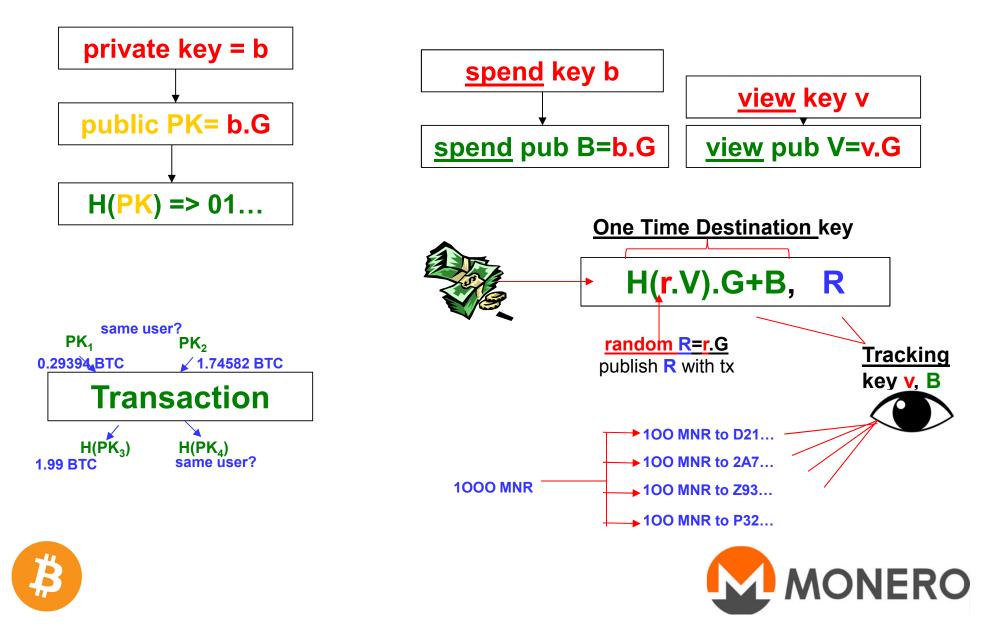
Crypto Coin Privacy


Stealth Address = "Invisible" Recipient

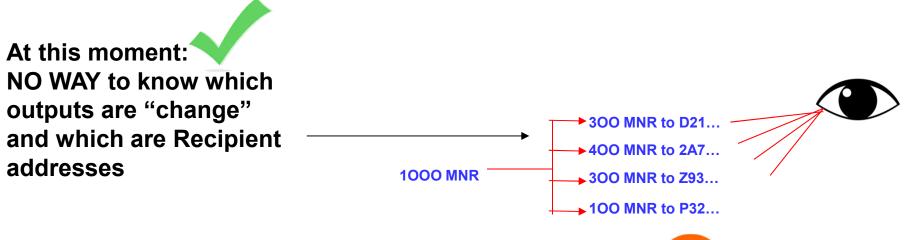
user=ByteCoin [Bitccoin forum]., also attributed to Peter Todd

A Method to protect the recipient [nobody knows I sent money to this recipient]

BTW. it is largely "permission-less"...

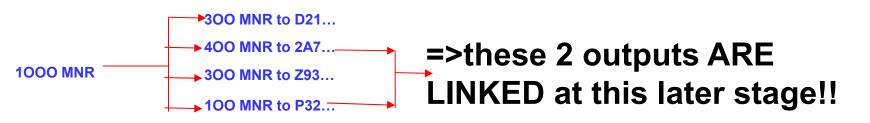


Sender: S=r.(v.G). Send bitcoins to E=H(S).G+b.G. Receiver: H(S)=H(v.(r.G)). Private key e=H(S)+b!!!



**Bitcoin vs. Monero

Privacy – Good?



FRAGMENTATION=>

C

Ø

moneroblocks.info/tx/c6275cb89791286b34d144e306e109e82450d72acd20d6c800f7660d73037d86

	Linked!!!
Inputs (5) five inputs of c627	,
Amount =>same user most	Key Image t probably was the receiver of all these 5
+ 0.03000000000	f47cfe640aa7d8b322f35704bafad4960a67855902f81c7b7b96c3efb4a79e4f
 20.0000000000 	b6a9ee733d9abd5bd6f50414069d253b7166d2c5da4d9081f2ac2252e2f2de63
• 0.6000000000	6a05d74584e3d68abd65df8f5774ea0c50c4ee0de2c621150e96dc274054eb4c
• 0.00900000000	60ed3286105f6515e9de694f5551e861dd46b88335c15707d92c30315eb6ceaf
 7.0000000000 	e8fed54756517685e62bbe11fe174e0da9254d658981d71be8c1b797b3ba645e
Outputs (6)	
Amount Public Key	
0.004000000000 081e57fc43f8393c99ck	b8168d2300a3047f6e74efea0bcfb3ae419
0050000000	

 $0.005000000000_{6d27cb0cc8f0ff0b2lbec86397513ddlb05a7b4f4a02079978249e_{\rm sc}}$

Blockchain Anonymity

Privacy/Anonymity is NOT a concern for the 90%. \Rightarrow WRONG:

 Asymmetry of information market manipulation and big data used by dishonest competitors.

Blockchain technology WILL NEVER be adopted by banks if it INCREASES the disclosures => need for anonymity solutions.

- Ring signatures.
- Zero knowledge proofs.
- Confidential Transactions [CT]
- Other advanced crypto, e.g. attribute-based encryption.

Digital Signatures – 1 Signer

0. Completeness –
honest signer always accepted
1. Soundness –


dishonest signer always rejected

Group Signatures

0. Completeness –
honest signer always accepted
1. Soundness –

dishonest signer always rejected

2. Anonymity – the verifier does not know who signed! signer ABCD

Crypto Currencies

Group Signatures-Big Brother Syndrome

- ⇒ Centralized: a group leader/manager sets it up
 - \Rightarrow Single Point of Failure
- \Rightarrow Trace-able:

most schemes ALLOW to remove anonymity [by the manager].

- ⇒ Not flexible: groups are defined beforehand
- \Rightarrow Not permission-free: nobody will force me to be a part of group.

Ring Signatures – Very Different

- ⇒ **De-Centralized**: no group manager
 - \Rightarrow Next weak point: it is sufficient to "crack" one key
- \Rightarrow In most schemes THERE IS NO WAY to remove anonymity
- ⇒ **Super flexible**: ad-hic groups not defined beforehand
- ⇒ Permission-less: I can be involved in one signature without doing anything
- ⇒ **Deniable**: it was not me... contrary of Non-repudiation/Imputability.

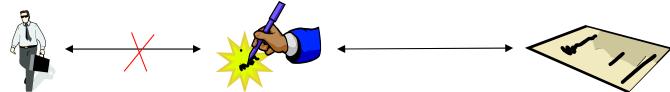
-Problems: there are ways to comprise anonymity: backdoors, covert channels...

-Potentially legal problems [Satoshi Nakamoto vs UK Law]

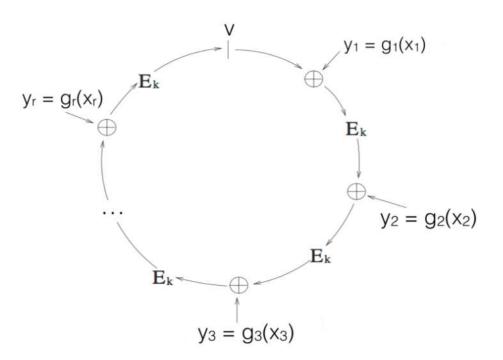
Main currency: XMR = Monero, 20 M\$ market cap@0716, 8x increase in 2 weeks.

Electronic Signatures – EU Directive 1999

1. Electronic Signature.


2. Advanced Electronic Signature. 2x link.

Ring Signatures - Unlinkable


Ambiguity: several signers are "equally probable" Unconditional Unlinkability

RST-style Ring Signatures

 Based on RSA/Rabin/other Trapdoor OWF

Crypto Coin Privacy

UCL

Cryptonote Ring Signature Method

sign gen:

$$\begin{split} L_{i} &= \begin{cases} q_{i}G, & \text{if } i = s \\ q_{i}G + w_{i}P_{i}, & \text{if } i \neq s \end{cases} \\ R_{i} &= \begin{cases} q_{i}\mathcal{H}_{p}(P_{i}), & \text{if } i = s \\ q_{i}\mathcal{H}_{p}(P_{i}) + w_{i}I, & \text{if } i \neq s \end{cases} \end{split}$$

non-interactive challenge:

$$c = \mathcal{H}_s(m, L_1, \ldots, L_n, R_1, \ldots, R_n)$$

the response:

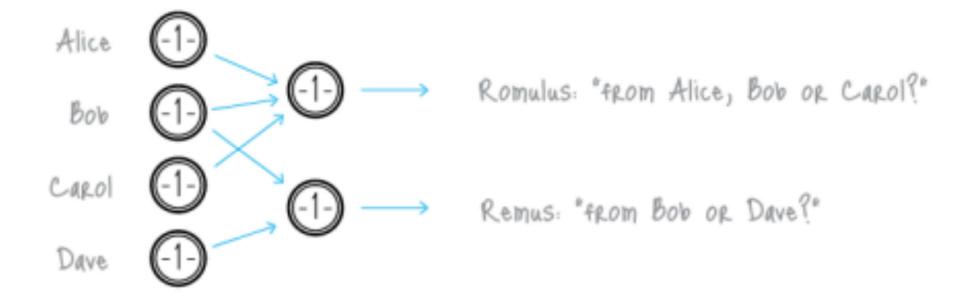
$$c_{i} = \begin{cases} w_{i}, \operatorname{random} & \text{if } i \neq s \\ c - \sum_{i=0}^{n} c_{i} \mod l, & \text{if } i = s \end{cases}$$
$$r_{i} = \begin{cases} q_{i}, \operatorname{random} & \text{if } i \neq s \\ q_{s} - c_{s}x \mod l, & \text{if } i = s \end{cases}$$
$$\sigma = (I, c_{1}, \dots, c_{n}, r_{1}, \dots, r_{n}).$$

a One-Time/Linkable Ring Signature

based on ECDL, a form of NIZK with n challenges c_i and n responses r_i

$$\underbrace{\text{verif:}}_{i=0} \begin{cases} L'_i = r_i G + c_i P_i \\ R'_i = r_i \mathcal{H}_p(P_i) + c_i I \\ \text{check} \end{cases}$$

$$if \sum_{i=0}^n c_i \stackrel{?}{=} \mathcal{H}_s(m, L'_0, \dots, L'_n, R'_0, \dots, R'_n) \mod l$$


(each user has a different way to satisfy this condition)

Linkable Ring Signatures

- Linking signatures by the same signer, with no revocation of anonymity!
- Needed to prevent double-spending.

Zero Knowledge

Digital Signatures

Zero-Knowledge

0. Completeness –

honest signer always accepted

1. Soundness – dishonest signer always rejected

2. Zero-Knowledge – the verifier does not learn ANYTHING

Zerocoin/Zerocash

ZeroCoin [Green et al. 2013]

Anonymity by destruction / creation of basecoins:

- Destroy 1 basecoin unit.
- ZK prove that you had it.
- The system agrees to re-create one basecoin.

money remains visible...

ZeroCash [Green et al. 2014]

• amounts and mixing also invisible!

=>ZEC went live 28 Oct 2016!

=>claimed 1st to achieve real untrace-ability

Zerocoin Basic Principles

S secret serial number,

r secret random "one-time private key" needed to spend S later on

H=g^Sh^r = the commitment published on the blockchain (≈creation of 1 ZC)

This serial number S is for accounting [avoid double spending],

Now revealing this serial number S will be worth 1 BTC, IF we can prove we know r which remains secret at all times. like one-time signature mechanism.

PROBLEM: Breaks bitcoin, requires permission of devs+miners for creation of bitcoins out of thin air

79

ZK Proof

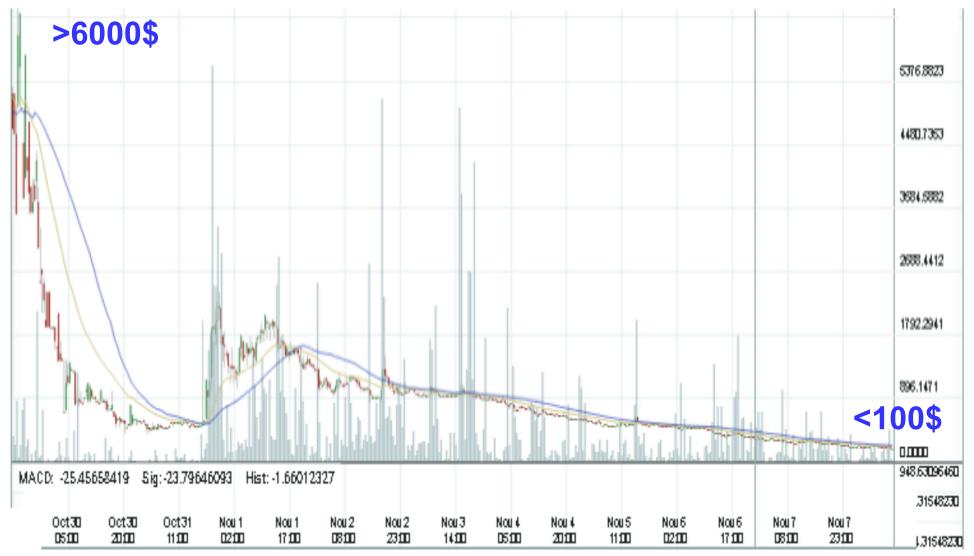
A ZK proof that you have 1 valid coin:

to spend **S** we produce a short ZK proof of:

Not totally different than a ring signature: No message to sign, but ANY out of many owners of some coin can produce it.

Size(proof)=log(#users).

80


I know r such that H₁=g^sh^r or H₂=g^Sh^r or H₃=g^Sh^r or . . . huge disjunction, up to for ALL existing coins

Delusion ≠ Greatness

• ZeroCash has already attracted a lot of criticism.

"Cryptographer's Job"

- Claim:
 - Blockchains do need A LOT MORE of "good" cryptography to be widely adopted.
 - We need more
 - security
 - privacy
 - speed
 - Most current blockchains have serious problems.

