Anonymous Crypto Currency

Stealth Address, Ring Signatures, Monero

Comparison to Zero.Cash

Nicolas T. Courtois
with help of Rebekah Mercer, Huanyu Ma, Mary Maller

- University College London, UK
Topics

Bitcoin vs. Monero vs. ZCash

Privacy / anonymity:
- for senders [Ring Signatures, ZK proofs]
- for receivers [Stealth Address methods]
- for the transaction amount [CT]*

CT=Confidential Transactions, not studied here
PK-based currencies

blockchain ….

\[pk_A \]

“normal” coin like in bitcoin
Q: Does Monero/ZCash remove this problem?
Bitcoin vs. Monero

private key = b

public PK = b.G

H(PK) => 01...

spend key b

view key v

spend pub B = b.G

view pub V = v.G

Transaction

- **PK₁, 0.29394 BTC**
- **PK₂, 1.74582 BTC**
- **PK₃, 1.99 BTC**
- **PK₄, same user?**

One Time Destination key

- **H(r.V).G + B, R**

random R = r.G

publish R with tx

Tracking key v, B

- **100 MNR to D21...**
- **100 MNR to 2A7...**
- **100 MNR to Z93...**
- **100 MNR to P32...**

1000 MNR
Advanced Crypto Magic
Commitments are used to Shield Coins:

\[S, r \]
nobody can see what is inside.

only the owner can open

they NEVER actually get opened
ZCash = a Large Scale Mixer

many coins from many \(pk_i \) are placed on the ledger (via an algorithm called mint)

"normal" coins like in bitcoin

"normal" yellow coins are "destroyed" and they exist as a mix of coins or "shielded" coins

one of the coins that is on the ledger is "re-born" and sent to \(pk_A \), but it is impossible to tell which one

"normal" coin like in bitcoin
Poor Adoption, 16GB of RAM etc…

- shielded coins = 7.3%
- transparent unspent block rewards = 2.6%
- “normal” transparent coins = 90.1%

image accessed 14/03/17
explorer.zcha.in/statistics/value
Problems with Z.Cash

• Whoever sets-up the Z.Cash system (CRS-based) might keep hold of some trapdoor information.
 • This trapdoor τ is material and real: the only hope is that it was erased!

• τ is NOT quantum secure: $g^\tau \mod p$ is published.

• τ does NOT allow to steal coins of other people

• But trapdoor τ allows to create an UNLIMITED number of NEW coins!
 • current Z.Cash does not (yet) have an audit method…
Motivation
Blockchain Anonymity – for Users

Privacy/Anonymity is NOT a concern for the 90% honest people?
⇒ WRONG: Asymmetry of information
⇒ corporations always win, customers always lose
⇒ market manipulation and big data used by criminal business
⇒ your life insurance will be overpriced
⇒ a self-driving car will kill you after being hacked by the mafia
Blockchain Anonymity
– for Financial Institutions!

⇒ Blockchain technology WILL NEVER be adopted by banks if it INCREASES the disclosures => need for anonymity solutions.

⇒ Advanced crypto solutions:
• Mixes, Exchanges, Altcoins/Side Chains/Offchain Storage
• Stealth Addresses
• Confidential Transactions (CT) by Maxwell
• Ring signatures
• Zero knowledge proofs,
• Attribute-based encryption,
• Multiparty computation on encrypted data,
• Etc.
Confused

⇒ “un-trace-able” payments
⇒ “un-link-able” payments
***Goals

Privacy / anonymity:
- for senders [Ring Signatures] => “un-trace-able origin” digital signature
- for receivers [Stealth Address] => “un-linkable” transactions
=> “un-link-able” PKs
Various Forms of Un-Linkability

- hard to link different PKs/addresses of the same user
- hard to link different TXs of the same user
- hard to link send different users (e.g. sender to recipient)
Monero Fundamentals
def: UTXO = Unspent Tx Output

Transaction 12

Transaction 25

spent

PK₁

PK₂

H(PK₃)

blockchain

H(PK₄)

not spent yet

1.99 BTC
Bitcoin and Monero

- **Private key**: b
- **Public key**: $PK = \mathbf{b.G}$

Spend key: $\text{spend pub } B = \mathbf{b.G}$

View key: $\text{view pub } V = \mathbf{v.G}$

One Time Destination: $PK = H(r.V).G + B, R$

Same Principle:
1. Money is attributed to PK,
2. You know the ECDL of this PK => can spend the money!

In Monero the blockchain knows NOTHING except money is flowing between ‘fresh’ pseudonyms PK.

(Also publishes R).
Monero - Covert Creation of Secrets

In Monero the blockchain knows NOTHING about the receiver identity = A, B, (the sender does use A, B).

The blockchain sees only PK and the extra number R (helps to unlock what is inside).

One Time Destination PK

\[PK = H(r.V).G + B, \quad R \]

Principle:

The receiver will have a “magical method” to compute the **private key** for this one-time PK.

Based on DH + extra pieces.
Stealth Address Method[s]

(several variants)
basic variant first
Diffie-Hellman mod P

Alice a | Bob b

$g^a \mod p$ \[\rightarrow\] $g^b \mod p$

shared key: $g^{ab} \mod p$

Alice computation: $(g^b)^a = g^{ab} \mod p$.
Bob’s computation: $(g^a)^b \mod p$.
EC Diffie-Hellman

Alice a | Bob b

$a.G$ \[\rightarrow\] \[\leftarrow\] $b.G$

shared key: \[ab.G = ba.G\]

Alice computation: $a.(b.G)$.
Bob’s computation: $b.(a.G)$.
Most Basic Stealth Address – Short Summary

<table>
<thead>
<tr>
<th>Payer/Sender a</th>
<th>Receiver b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.G</td>
<td>b.G</td>
</tr>
</tbody>
</table>

shared key:

\[S = a(b.G) = b(a.G) \]

Sender: \(S = a.(b.G) \). Send bitcoins to \(E = H'(H(S).G) \).

Receiver: \(H(S) = H(b.(a.G)) \). Private key \(e = H(S) \).
Stealth Address = “Invisible” Recipient

- Based on ideas by user=ByteCoin [Bitccoin forum]. “Untraceable transactions […] are inevitable.” 17/4/2011. Expanded and re-developed on 6/1/2014 by Peter Todd.

A Method to protect the recipient
[nobody knows I sent money to this recipient]

* A bit like:
 - Send to a new one-time entity and “transmit” the “new/one-time” private key by a confidential channel.

BTW. it is largely “permission-less”…
Who is using Stealth Address?

- **Dark Wallet**, open source BTC wallet, implements 102-chars long S.A. + coin mixing.

- **Monero**
 - Market cap $20M=>$320M recently

- **Vertcoin QT client**
 - Market Cap: $1M

- **Shadow cash,**
 - Market cap $2M
Stealth Address = “Invisible” Recipient

- Using Diffie-Hellman. Sender=a Receiver=b private keys.
- Sender Sender/A knows the recipient’s public key b.G mod P and Rec/B knows Send/A’s public key a.G mod P.
- Sender/A computes S=ab.G.
- A computes H(S) and generates a deterministic new bitcoin private key SK_transfer=H(S). Transfer address E = \(H'(H(S).G) \).
- A sends bitcoins to this address (Send/A could take money back!)
Stealth Address = “Invisible” Recipient

- Using Diffie-Hellman. Sender=a Receiver=b private keys.
- Sender Sender/A knows the recipient’s public key b.G mod P
 and Rec/B knows Send/A’s public key a.G mod P.
- Sender/A computes \(S = ab.G \).
- A computes \(H(S) \) and generates a deterministic new bitcoin
 private key \(SK_{transfer} = H(S) \). Transfer address \(E = H'(H(S).G) \).
- A sends bitcoins to this address (Send/A could take money back!)
- Due to DH magic, Rec/B also knows this private key \(H(b.(a.G)) \).
- B takes the money and transfers them to a new addresses,
Stealth Address = “Invisible” Recipient

• Using Diffie-Hellman. Sender=a, Receiver=b private keys.
• Sender A knows the recipient’s public key b.G mod P and Rec/B knows Send/A’s public key a.G mod P.
• Sender/A computes S=ab.G.
• A computes H(S) and generates a deterministic new bitcoin private key SK_transfer=H(S). Transfer address E = H’(H(S).G).
• A sends bitcoins to this address (Send/A could take money back!)
• Due to DH magic, Rec/B also knows this private key H(b.(a.G)).
• B takes the money and transfers them to a new addresses, quickly!!!!
Security

• Risk:
 – The sender can spend! [Todd Jan 2014]
 – Both know private key $SK_{\text{transfer}}=H(S)$.

 – Like 24h time to think about and change his mind.
 – The receiver MUST be active, ONLINE.
 ⇒move money ASAP to another account before Sender takes it back.
 ⇒active/real time=>easier to trace, poor anonymity,
 – good for catching criminals who ask for ransoms.
Security (contd)

• Increased disclosure:
 – Here Recipient/B knows public key $b.G$ in advance (public directory? or e.g. disclosed to any user who visits a recipient web site).
 – In bitcoin it is not disclosed
 [NSA: pls crack ECDSA/ECDL in 1 second vs. 1 year].

• Nobody knows who is the recipient of a given transaction or we cannot relate it with Recipient/B public key $b.G$ even though it is in a public directory. (must keep extra data not in the blockchain).

• Deterministic: same 2 principals $A+B=\Rightarrow$same Transfer address E.

• Recipient/B is anonymous only if he can hide his network presence (e.g. using TOR) when spending his attributions [issuing digital signatures].
 – He needs to be careful about how he is spending the money: next address not stealth, not protected!
Improved
Asymmetric
Stealth Address
Method
Improved Stealth Address = Stronger Spending Key

Sender/A and Recipient/B share this common secret:
A shared bitcoin private key for A/B
\[H(S) = H(ab.G) \]

One can derive a stronger/more interesting private key like:
\[e = H(S) + b \]

Asymmetry here: Recipient/B will be the ONLY person to know \(b \).
Yet Sender/A CAN compute the corresponding public key [and he knows the recipient, other people don’t].
\[E = H(S).G + b.G \]

Later he just sends money to \(H'(E) \).

*inevitably \(E \) will be revealed when this money is spent further.
***Only A and B can know if this E is valid [variant of DDH problem].

Sender cannot spend anymore!
Improved Stealth – DH View

Payer/Sender a

- $a.G$

Receiver b

- $b.G$

Shared key:

$$ab.G = ba.G$$

Sender: $S = a.(b.G)$. Send bitcoins to $E = H(S).G + b.G$.

Receiver: $H(S) = H(b.(a.G))$. Private key $e = H(S) + b$!!!
****variant with random nonce-keypair

Payer/Sender: r

Receiver: b

$r.G$

shared key: $rb.G = br.G$

Receiver: $H(S) = H(b.(r.G))$. Private key $e = H(S) + b$!!!
Stealth Address - Drawbacks

- Must monitor ALL transactions in blockchain!!!!
 Download last few months: 1 day on a PC.
Stealth Address - Drawbacks

• Must monitor ALL* transactions in blockchain!!!!
 Download last few months: 1 day on a PC.

*actually those with OP_RETURN ==6a26…

***For every transaction:

• Check list of inputs, their PK $a.G$ MUST be revealed in signing scripts (needed to check if tx correct for miners)
 => compute $S = b.(a.G)$

• Compute the public key $E = b.G + H(S).G$

• Variant: Compute $H'(E)$ – only hash $H'(E)$ needs to be revealed at this moment
 => later when money is spent E is also revealed.

• Check if $H'(E)$ is one output in the same transaction.

• The private key to spend coins is $e = b + H(S)$.
apparently 2 bad random r in monero same user, make the attacker who has 2 view keys v also, able to compute a linear relation between their e keys used to spend...
nc, 07/10/2016
****More Drawbacks

• Recall: private key to spend coins is $e = b + H(S)$.

Privilege escalation attack?
 – If one e is compromised due to a bad random $\Rightarrow b$ is compromised but only for the Sender/A, other people cannot compute S.
Yet Stronger: 2xKey Stealth Address Method
decouples “masking” from DH mechanism used when spending
• Current private key b will become 2 values:
 user **Private User Key** = b,v
• 2 keys playing a different role, b is “more” secret.

- **Spend key b**
 - **Spend pub $B = b.G$**
- **View key v**
 - **View pub $V = v.G$**

* b,a in CryptoNote 2.0 paper by Nic van Sab.*
2-Key Stealth Address

- Private User Key = \(b,v \)
- spend key \(b \)
- spend pub \(B = b.G \)
- view key \(v \)
- view pub \(V = v.G \)

• One of them = \(v = \text{View} \) is given to a proxy entity to implement painful blockchain checks for us and notify us that payment has arrived.

- Tracking Key = \(v, b.G \) (removes anonymity).

* \(b,a \) in CryptoNote 2.0 paper by Nic van Sab.
2-Key Stealth Address

Private User Key = b,v

- spend key b
- spend pub B = b.G

view key v

view pub V = v.G

Tracking Key = v, b.G (removes anonymity).

- Receiver has Public User key = b.G, v.G.

Advertised/provided/listed by the receiver, NOT visible in the blockchain transactions!
**Stealth Address Coding

Dark Wallet uses a 102 character encoding in Base58 (up to 596 bits).

(less secure against quantum computers 6 M vs 1 second)
2-Key Stealth Address – Version A

- Recipient/B has **Private User Key** = b, v
- Proxy has **Tracking Key** = v, b.G (removes anonymity).
- Receiver **Public User key** = b.G, v.G.

- Proxy and Receiver can compute v.(a.G) for every tx done by any A.
- Sender/A can do a.(v.G).
- A sends bitcoins to E = b.G + H(S).G.
- Proxy does not know e.
- Proxy can compute E and see transactions (**view key for this tx**).
- Only the recipient has b (**spend key for this tx**).
 - Private key e = b + H(S) allows to spend the bitcoins sent to E.
slight improvement

Monero
2xStealth Address
Method
One Tiny Change

• sender avoids using ANY permanent identity a A.
• instead he uses a random ephemeral ‘nonce keypair’ r and publishes R=r.G together with the current transaction.
• a subtle point, made clear by Todd 06 Jan 2014. (other sources use notation P=e.G for the same thing).
2-Key Stealth Address – Pb. Version

- Recipient/B has **Private User Key** = b,v
- Proxy has **Tracking Key** = v, b.G (removes anonymity).
- Receiver **Public User key** = b.G, v.G.

- Proxy and Receiver can compute v.(a.G) for every tx done by any A.
- Sender/A can do a.(v.G).
- A sends bitcoins to E=b.G+H(S).G.
- Proxy does not know e.
- Proxy can compute E and see transactions (**view key for this tx**).
- Only the recipient has b (**spend key for this tx**).
 - Private key e=b+H(S) allows to spend the bitcoins sent to E.
Better Stealth Address used in Monero

- Recipient/B has **Private User Key** = b,v
- Proxy has **Tracking Key** = v, b.G (removes anonymity).
- Receiver **Public User key** = b.G, v.G.

- Let $S = v \cdot (r \cdot G) = r \cdot (v \cdot G)$. Sender random r, publishes $R = r \cdot G$ with this tx.
- Proxy and Receiver can compute $v \cdot (r \cdot G)$ for every tx done by any A.
- Sender/A can do $r \cdot (v \cdot G)$.
- A sends bitcoins to $E = b \cdot G + H(S) \cdot G$.
- Proxy does not know e.
- Proxy can compute E and see transactions (**view key for this tx**).
- Only the recipient has b (**spend key for this tx**).
 - Private key $e = b + H(S)$ allows to spend the bitcoins sent to E.

fixed a was replaced by random r
Bitcoin vs. Monero

private key = b

public PK = b.G

H(PK) => 01...

snopek key b

spend pub B = b.G

view key v

view pub V = v.G

Transaction

PK1

0.29394 BTC

PK2

1.74582 BTC

PK3

1.99 BTC

PK4

same user?

One Time Destination key

H(r.V).G + B, R

random R = r.G

publish R with tx

Tracking key v, B

1000 MNR

300 MNR to D21...

400 MNR to 2A7...

300 MNR to Z93...

100 MNR to P32...
Sending Monero

spend key b

spend pub B = b.G

view key v

view pub V = v.G

\[H(r.V).G + B, \quad R \]

Money from several attributions to PKs: the sender must know the ECDL for ALL these inputs
Quiz

- How could \(r \) be compromised?
 [boot/RAM/seed/record/entropy/repeated].
- What happens if \(r \) is compromised?
 - Privacy?
 - Theft?
- What is the same \(r \) is used in 2 different transactions?
 - Somewhat *encouraged* inside the CryptoNote paper p.7!! Earlier was fixed \(a/A \).
 - Any consequences for privacy?
- Does equality of(what?) PROVE that 2 transactions are from the same sender?
- Under which condition they MUST be from the same sender?
 - is there a risk of losing money?
- Can one force the sender to follow such a protocol?
- Why PK not hashed? Could it be hashed like \(H'(H(r.V).G+B) \) ???
or money would be lost, cannot spend unless private key transmitted by another channel
nc, 07/10/2016
At this moment: ✅
NO WAY to know which outputs are “change” and which are Recipient addresses
Privacy?

PB 1. Easy to distinguish large transactions [even though could be split in many smaller txs, but still they are visible in bulk]

Needed: CT.

[future plans for Monero]

```
random R = r.G
publish R with tx
```

```
300 MNR to D21...
400 MNR to 2A7...
300 MNR to Z93...
100 MNR to P32...
```

```
1000 MNR
```

```
H(r.V).G + B, R
```

```
One Time Destination key
```

```
Tracking key v, B
```
PB 2. But probably just 2 recipients (circumstantial evidence)

Tracking key v, B
At this moment: ✅
NO WAY to know which outputs are “change” and which are Recipient addresses
Pb3.

LATER:

one input of a new tx, => was same user, most probably

1000 MNR

300 MNR to D21...
400 MNR to 2A7...
300 MNR to Z93...
100 MNR to P32...
Example:

five inputs of c627....

=>same user most probably was the receiver of all these 5

<table>
<thead>
<tr>
<th>Amount</th>
<th>Key Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 0.030000000000</td>
<td>f47cfe640aa7d8b322f35704bafad4960a67855902f81c7b7b96c3efb4af79e4f</td>
</tr>
<tr>
<td>+ 20.00000000000000</td>
<td>b6a9ee733d9abd6bd8f5041089d253b7168d2c5da4d0881f2ac2252e2f2de63</td>
</tr>
<tr>
<td>+ 0.60000000000000</td>
<td>6a05df74584ed68ab65df8f5774ea0c50c4e00de2c621150e96dc270454eb4c</td>
</tr>
<tr>
<td>+ 0.00900000000000</td>
<td>60ed3286105f6515e9de694f5551e861dd46b88335c15707d92c30315eb6ceaf</td>
</tr>
<tr>
<td>+ 7.00000000000000</td>
<td>e8fed5475617685e62bba11fe174e0da9254d658981d71b8e8cb797b3ba645e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amount</th>
<th>Public Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00400000000000</td>
<td>081e57fca3f8393c99cb8168d2300a3047f6e74efea0bcbfb3ae419...</td>
</tr>
<tr>
<td>0.00500000000000</td>
<td>6d27c0cc8f0ff0bb21bece88397513dd1b05a7b4f4a020793978249e...</td>
</tr>
</tbody>
</table>
Pb3.

Spending reveals information and compromises privacy

=>these 2 outputs ARE LINKED now!!
“Merge Avoidance”

[term coined by Mike Hearn for bitcoin]
Transfer THE exact amount to the next owner
=> pay in several transactions to several addresses
(delay/avoid merging of different UTXOs)

=> fragmentation and blockchain size explosion…
Monero wallets can trade privacy for speed listing fees. Users can do extra mixing in the meantime. Large or more transactions lead to larger fees. Transactions are linked at a later stage.
Wish List

Privacy / anonymity:
- for senders [Ring S.]
- for receivers [3xStealth Address] OK??????
- for the transaction amount [CT] X
Myth Exposed

Paper by Monero labs:
Adam Mackenzie, Surae Noether and Monero Core Team:
“Improving Obfuscation in the CryptoNote Protocol”, Jan’15
https://lab.getmonero.org/pubs/MRL-0004.pdf

Citations:
“CryptoNote is very traceable”
[...]
“users can receive CryptoNote-based cryptocurrencies with no concern for their privacy, they cannot necessarily spend those currencies without releasing some information about their past transactions”

(similar to bitcoin)
Variants
Nice Trick

[CryptoNote 2.0 paper page 8]

A method to create a Monero key such that ANYONE CAN LINK ALL the transactions:

Normal Monero:
- **Private User Key** = \(b,v \)
- **Public User Key** = \(B,V \)
- And \(B,v = \text{View Key} \) CAN be safely given to a proxy entity
 - to see and link all incoming funds.

To achieve transparency:
- We simply use \(v=H(B) \) which anyone can compute and use!
- Everything else works as before.

Exercise: explain why this method is safe.
Group and Ring Signatures

or privacy for senders => “un-linkable” transactions
Digital Signatures – 1 Signer

0. Completeness –
honest signer always accepted

1. Soundness –
dishonest signer always rejected
Digital Signatures

Group Signatures

0. Completeness – honest signer always accepted
1. Soundness – dishonest signer always rejected

2. Anonymity – the verifier does not know who signed!

signer AB CD
Group Signatures-Big Brother Syndrome

⇒ **Centralized**: a group leader/manager sets it up
 ⇒ Single Point of Failure

⇒ **Trace-able**: most schemes ALLOW to remove anonymity [by the manager].

⇒ **Not flexible**: groups are defined beforehand

⇒ **Not permission-free**: nobody will force me to be a part of group.
Ring Signatures – Very Different

⇒ **De-Centralized**: no group manager
 ⇒ Next weak point: it is sufficient to “crack” one key

⇒ In most schemes **THERE IS NO WAY** to remove anonymity

⇒ **Super flexible**: ad-hic groups not defined beforehand

⇒ **Permission-less**: I can be involved in one signature without doing anything

⇒ **High Deniability**: not me, contrary of Non-repudiation/Imputability.

-Problems: there are ways to comprise anonymity:
backdoors, covert channels...

-Potentially legal problems [Satoshi Nakamoto vs UK Law]

Main currency:
XMR = Monero, 20 M$ market cap@0716, 8x increase in 2 weeks.
Electronic Signatures – EU Directive 1999

1. Electronic Signature.

2. Advanced Electronic Signature.

2x link.
1x link.

Ambiguity: several signers are “equally probable”

Unconditional Unlinkability
RST-style Ring Signatures

• Based on RSA/Rabin/other Trapdoor OWF
Crypto Coin Privacy

Cryptonote Ring Signature Method

sign gen:

\[L_i = \begin{cases} q_i G, & \text{if } i = s \\ q_i G + w_i P_i, & \text{if } i \neq s \end{cases} \]

\[R_i = \begin{cases} q_i \mathcal{H}_p(P_i), & \text{if } i = s \\ q_i \mathcal{H}_p(P_i) + w_i I, & \text{if } i \neq s \end{cases} \]

non-interactive challenge:

\[c = \mathcal{H}_s(m, L_1, \ldots, L_n, R_1, \ldots, R_n) \]

the response:

\[c_i = \begin{cases} w_i, & \text{if } i \neq s \\ c - \sum_{i=0}^{n} c_i \mod l, & \text{if } i = s \end{cases} \]

\[r_i = \begin{cases} q_i, & \text{if } i \neq s \\ q_s - c_s x \mod l, & \text{if } i = s \end{cases} \]

\[\sigma = (I, c_1, \ldots, c_n, r_1, \ldots, r_n). \]

verif:

\[\begin{cases} L_i' = r_i G + c_i P_i \\ R_i' = r_i \mathcal{H}_p(P_i) + c_i I \end{cases} \]

Check:

\[\sum_{i=0}^{n} c_i = \mathcal{H}_s(m, L'_0, \ldots, L'_n, R'_0, \ldots, R'_n) \mod l \]

(each user has a different way to satisfy this condition)
References

• Eiichiro Fujisaki, Koutarou Suzuki: “Traceable Ring Signature”, PKC 2007 a.k.a. eprint/2006/389

• Nicolas van Saberhagen, Cryptonote v 2.0, https://cryptonote.org/whitepaper.pdf, 2013. [“key image” modification]

• Andrew Poelstra, Gregory Maxwell: Toward Unlinkable Bitcoin Transactions, draft, 2014-10-05
Performance

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Signature Size</th>
<th>Security</th>
<th>Model</th>
<th>Linking Complexity</th>
<th>Sign Computation<sup>a</sup></th>
<th>Verify Computation<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu et al. [16]</td>
<td>$O(n)$</td>
<td>DL, DDH</td>
<td>ROM</td>
<td>$O(1)$</td>
<td>$2(n-1)M + 3E$</td>
<td>$2nM$</td>
</tr>
<tr>
<td>Tsang and Wei [18]</td>
<td>$O(1)$</td>
<td>LD-RSA, DDH</td>
<td>ROM</td>
<td>$O(1)$</td>
<td>$(2+n)E + 7M$</td>
<td>$7M$</td>
</tr>
<tr>
<td>Liu and Wong [19]</td>
<td>$O(n)$</td>
<td>DL, DDH</td>
<td>ROM</td>
<td>$O(1)$</td>
<td>$E + 2M$</td>
<td>$2M$</td>
</tr>
<tr>
<td>Au et al. [23]</td>
<td>$O(1)$</td>
<td>LD-RSA, DDH, strong RSA</td>
<td>ROM</td>
<td>$O(1)$</td>
<td>$(2+n)E + 7M$</td>
<td>$7M$</td>
</tr>
<tr>
<td>Zheng et al. [25]</td>
<td>$O(n)$</td>
<td>S-DL, S-DPDH</td>
<td>ROM</td>
<td>$O(1)$</td>
<td>$(14n + 2)$ seq. op.<sup>b</sup></td>
<td>$(14n + 2)$ seq. op.<sup>b</sup></td>
</tr>
<tr>
<td>Tsang et al. [26, 21]</td>
<td>$O(n)$</td>
<td>strong RSA, DDH</td>
<td>ROM</td>
<td>$O(n^2)$</td>
<td>$2(n+1)E$ + $2(n-1)M$ ([21])</td>
<td>$5nM$ ([26])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$(n+4)E$ + $4nM$ ([26])</td>
<td></td>
</tr>
<tr>
<td>Fujisaki [27]</td>
<td>$O(\sqrt{n})$</td>
<td>SDH, Subgp, DDHI, OTS</td>
<td>standard</td>
<td>$O(n \log n)$</td>
<td>$(6 + 13\sqrt{n})E + (5 + n + 2\sqrt{n})M + 2\sqrt{n}P + OTS$</td>
<td>$nM + (8 + 2n + 12\sqrt{n})P + OTV$</td>
</tr>
<tr>
<td>Our scheme</td>
<td>$O(\sqrt{n})$</td>
<td>SDH, Subgp, DDHI, OTS</td>
<td>standard</td>
<td>$O(1)$</td>
<td>$(8 + 4\sqrt{n})E + (4 + 2\sqrt{n})M + OTS$</td>
<td>$2E + 8(1 + \sqrt{n})P + 1$</td>
</tr>
</tbody>
</table>
Problem with Ring Signatures
Using Ring Signatures

• A typical situation when ring signatures are used:

Alice
Bob
Carol
Dave

Romulus: “from Alice, Bob or Carol?”

Remus: “from Bob or Dave?”

Problem???
Using Ring Signatures

• A typical situation when ring signatures are used:

Bob can spend twice!
Linkable Ring Signatures

• Detect that the same origin 1 BTC was used twice by the same signer.

Bob’s 2 signatures are flagged
Linkable/One-Time Ring Signatures

• Linking signatures by the same signer, with no revocation of anonymity!
• Needed to prevent double-spending.
Chaum e-Cash
Anonymity in Chaumian e-Cash

S secret serial number of my coin
- Known only to the user
- The bank which digitally signed S does NOT know S.

This serial number S is used to avoid double spending: bank keeps a list of those already spent.

PROBLEM: recipient MUST be online:
- IMMEDIATELY cash this S.
 - serious risk of double spending.

=> Highly anonymous
 but the recipient cannot hide himself =>CANNOT extortion.
Zero Knowledge Proofs

• A proof of knowledge... that leaks no knowledge
 => no knowledge about the secrets
 => a very strong form of provable security
Digital Signatures

Zero-Knowledge

0. Completeness – honest signer always accepted
1. Soundness – dishonest signer always rejected
2. Zero-Knowledge – the verifier does not learn ANYTHING more than needed

Transferability: Can the verifier convince a third party?

Statement is True!

(NIZK better than ZK)
Attacks on Proofs of Knowledge

Impersonation

Prover

Passive

Active

Extract the Secret

Verifier
Zerocoin/Zerocash Difference

ZeroCoin [Green et al. 2013]
Anonymity by destruction / creation of basecoins:
- Destroy 1 basecoin unit.
- ZK prove that you had it.
- The system agrees to re-create one basecoin.

ZeroCash [Green et al. 2014]
- amounts and mixing also invisible!

=> claimed 1st to achieve real untrace-ability

=> ZEC went live 28 Oct 2016!
Zerocoin Basic Principles

S secret serial number of my coin (initially secret, will be revealed later).

r secret random “one-time private key” needed to spend S later on

\[H = g^{S_h^r} \] = the commitment published on the blockchain

=>creation of 1 shielded coin 1 ZC can exist either as “normal” coin or “shielded”

The serial number S is for accounting [avoid double spending],

Now revealing this serial number S will be worth 1 BTC, if we prove we know

r which remains secret at all times. like one-time signature mechanism.

PROBLEM: Breaks bitcoin requires permission of devs+miners for creation of bitcoins out of thin air
A ZK proof that you have 1 valid coin:

to spend S we produce a short ZK proof of:

Not totally different than a ring signature:
No message to sign, but
ANY out of many owners of some coin
can produce it.

Size(proof)=log(#users).

I know r such that

$$H_1 = g^{sh_r}$$
or
$$H_2 = g^{sh_r}$$
or
$$H_3 = g^{sh_r}$$
or
...huge disjunction, up to for ALL existing coins
Summary of Zerocoin/Zerocash Issues

Modified from https://bitcointalk.org/index.php?topic=279249.0

- cutting-edge cryptography: maybe insecure, understood by relatively few people
- large 20 Kbyte signatures
- it requires a trusted party to initiate its accumulator (1 Gbyte).
 - NOBODY SHOULD KNOW the secret. Otherwise: steal coins. (Perhaps fixable with more cutting-edge crypto.)
- validation is very slow (2tx / second on a fast CPU), a major barrier to deployment in Bitcoin as each full node must validate every transaction.
- large transactions and slow validation means costly transactions => reduces the anonymity set size [ZEC requires 8G or RAM to create anonymous transactions]
- uses an accumulator which grows forever and has no pruning.
 - need to switch accumulators periodically to reduce the working set size, reducing the anonymity set size.
- Zerocoin requires a fork in Bitcoin which all full nodes must adopt.
 - developers and Bitcoin businesses are very concerned about being overly associated with "anonymity".
Zerocoin Criticism [Roeland Creve 2016]

Source: http://weuse.cash/2016/06/09/btc-xmr-zcash/

Main points [re-stated]:
• Zerocash does **NOT enforce** mixing, large CPU cost + 8G RAM !.
 – Most users will not use it? If so it may be **ineffective**: one can analyse which coins enter/exit the darker parts of Zerocash blockchain and at which moment.
• One cannot easily audit the total number of coins in the system. If there is a hypothetical crypto attack which creates coins out of thin air, this could remain unnoticed for some time.
• Zerocash has a **master secret** and could be compromised by the NSA which would precisely allow unlimited coin creation.
 – Hard to prove that it was destroyed.
 – The company is US-based and could be legally forced to cooperate.
• Multisigs are not supported and seems hard to make.
Zerocoin Pros

Very strong privacy potentially.

Mining and transactions requires lots of RAM => more egalitarian? Less dystopian? cf. bitcoin as Satoshi imagined it: everyone mining.