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Abstract

The aim of this thesis is to study the Rowhammer attack and evaluate its feasibil-

ity on practical exploitation scenarios in Linux. Currently, all the implementations

released, capable of performing the Rowhammer attack require elevated privileges,

which is a very strong requirement and somehow puts the attack into the theoret-

ical spectrum. The purpose of this report is to explore and implement different

techniques that would allow the execution of the Rowhammer attack in userspace.

More specifically, we provide three implementation, each of them having differ-

ent strength of requirements but with one characteristic in common: the capability

of executing the Rowhammer attack without elevated privileges. We then proceed

and evaluate the performance of the new implementations with comparison to the

performance of the already existing tools. At the end, we see that not only it was

possible to reach similar levels of performance with the programs that required ele-

vated privileges but in some cases even outperform them, in both native and virtual

environments.
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Chapter 1

Introduction

A key assumption in modern computer security is that a memory location may only

be modified by directly addressing that specific location. However, as it was shown

by Kim, Daly, Fallin et al. in [4] in 2014, this assumption is not true. This is the core

principle of the Rowhammer attack, where a sophisticated adversary may be able

to alter memory locations owned by different applications by performing specific

memory access patterns on his own memory. As it was shown over the last years,

this is an extremely dangerous vulnerability and it can efficiently exploited under

different settings and may expose a computer system to attacks even in absence of

any software bugs. The seriousness of this vulnerability was acknowledged by the

Linux community and they took some mititgation measures to restrict the execution

of the attack to privileged users. All the currently available tools capable of inducing

the Rowhammer vulnerability are prevented to run in userspace by those mitigation

measures and that’s why our goal is to find new ways to circumvent this restriction

and assess whether or not they are practical to use for exploitation.



Chapter 2

Background on Computer Memory

2.1 DRAM
Modern DRAM modules hierarchy is organized into multiple levels. At its bottom,

there are the memory cells, which are the main components for storing informa-

tion within DRAM modules . A memory cell, as shown in Figure 2.1, is composed

by one transistor and one capacitor. The transistor is used to enable the potential

charging of the capacitor, which at the end will hold the encoded one-bit informa-

tion. Due to the nature of the capacitor, there is current leakage through the access

transistor, so in order to retain its value within the predefined noise margins, a peri-

odic refreshing within the expected lifetime of the information is necessary. During

the refreshing time, the capacitor gets recharged to its original levels.

The memory cells are then grouped into a two-dimensional grid with rows and

columns to form the next level into the hierarchy, the bank. A collection of banks is

Figure 2.1: Memory Cell Structure, Source: [1] (Modified)
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further combined to form a chip on the module. A chip has a specified data width

(typically 4 or 8 bits) and so multiple chips are utilized in order to fill the bus width

of the module (typically 64 bits or 72 with ECC) and form the top level of the hier-

archy, the rank. Modern DRAM modules may have 1,2 or 4 ranks. Finally, since the

total capacity of a DRAM module is limited, it is common for memory controllers

to support access to multiple modules and even provide increased bandwidth by

accessing them in parallel. In the latter case, the memory controller groups the

DRAM modules in channels, where each channel can be accessed independently

from the others. The operations on the DRAM module most of the times are di-

rectly controlled by the memory controller. When there is memory access request,

the memory controller maps the corresponding physical address into the DRAM

hierarchy using a bijective function. What that means, is that for each physical

address, there is a corresponding channel, DRAM module, rank, bank, row and col-

umn. After mapping the address, the memory controller activates the row where the

data resides in which causes the data to be sensed by the sense amplifiers and stored

Figure 2.2: DRAM Structure, Source: [2] (Modified)
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into the row-buffer. The row buffer in this case essentially acts as a cache to facili-

tate faster access to data with spatial locality (in the DRAM module) and each bank

has its own row-buffer. Finally, after the data gets sensed into the row-buffer, the

input signals for the data columns are used to return the requested data. A graphical

way to describe the above operation can be observe in Figure 2.2

2.2 Virtual Memory
The detailed description of virtual memory is not within the scope of this thesis. For

the purpose of this thesis, we will overview some aspects of virtual memory and its

general operation. On a higher level, virtual memory can be considered as an inter-

mediate layer between the user and the physical memory. As such, in this model the

user interacts only with the virtual memory. A simple a example of how the model

of virtual memory works can be seen in Figure 2.3. As we can see in the figure,

a virtual memory location could correspond to a location in physical memory, like

the physical frame 9 in this example, but it could also map to the disk or even be

invalid for the current user. These virtual memory mappings are stored inside spe-

cial data structures called Page Tables. Page Tables are composed by Page Table

Entries (PTE) where each PTE holds the mapping of a virtual memory region. Now

due to how virtual memory operates, each memory access has to be preceded by

the calculation of that mapping. This operation is commonly implemented in hard-

Figure 2.3: Virtual Memory Mapping



2.2. Virtual Memory 15

Figure 2.4: Virtual Address to DRAM Dataflow

ware for performance reasons. Modern processors include a Memory Management

Unit (MMU) which has as part of its responsibilities the virtual address translation.

The units normally engaged when there is a memory access can be observed in

Figure 2.4. In this example, we have also included the memory controller, which

is normally part of the CPU and as illustrated in the figure is responsible for the

translation of a physical address to a DRAM memory location. This is a quick in-

troduction into the virtual memory, for the reader who is interested in learning more

about memory in general, Ulrich Drepper has written a detailed paper in [5] and is

an excellent source of information.



Chapter 3

The Rowhammmer Side Channel

After defining the basics of DRAM architecture and the quick virtual memory

overview, it’s time to introduce the Rowhammer phenomenon. The term Rowham-

mer in the memory context was formally defined and publicized by Kim, Daly,

Fallin et al. [4] in 2014. It is described as the process of repeatedly activating

specific rows within a bank which had the side-effect of flipping bits in neighbor-

ing rows. This behavior, as it was mentioned in the paper, is a direct consequence

of the inter-cell coupling effects that accelerate charge leaking in adjacent rows

which eventually provokes bit flips in memory locations which potentially belong

to another process. The disturbance caused by those effects is amplified by the

increased density of modern memory cells e.g. in DDR3 due to poor isolation be-

tween neighboring cells. The end result, bit flips in different rows, adjacent to those

”Hammered” by the attacker.

The success of inducing the Rowhammmer perturbation relies on two capabili-

ties on the attacker’s side. First, the attacker has to be capable of bypassing the CPU

cache for his memory accesses. This is due to the fact that when a memory access is

already in the CPU cache, the DRAM module will not get activated and instead the

memory access will be served by the CPU cache. After bypassing the CPU cache,

the attacker needs to be able to avoid hitting the target’s bank row buffer which is

described in §2.1. By accessing memory locations which are already in the row

buffer will prevent the corresponding row to get activated and so the attack cannot

be performed.
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Even though the attack’s requirements are straightforward, their implementa-

tion in practice can hide various complexities. In the next chapter we will discuss

various ways of implementing each of the requirements that could be useful in dif-

ferent scenarios.

3.1 Attack Foundations

3.1.1 Requirement 1: Bypassing the CPU Cache

Full description of cache memory is not within the scope of this thesis. We will

only provide the elements essential for the Rowhammer attack. Modern processors

utilize multiple levels of cache memory in order to keep to the minimum the re-

quired DRAM memory accesses. An important characteristic of each cache level is

its cache inclusion policy. We will say that a cache memory is higher in the mem-

ory hierarchy if it’s closer to the CPU. For example, L1 cache will be always the

highest ranking type of memory among the rest of the cache levels. An example of

the various levels of a modern memory hierarchy can be seen in Figure 3.1.

Most common types of cache inclusion policies are Inclusive, Exclusive and

Non-Inclusive/Non-Exclusive (NINE). When a cache level is Inclusive, it is guar-

anteed to include all the data found in the higher cache levels. When a cache level

is Exclusive, then it is guaranteed that it doesn’t include any data found in the cache

levels above its own. With the NINE, there is no guarantee to be neither Inclusive

nor Exclusive. Having this brief description of the cache, we will review various

Figure 3.1: Example of the Multiple Levels of Memory Hierarchy
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techniques which aim at bypassing the cache.

Architecture Specific Instructions Since the CPU cache plays a critical role in the

system’s performance optimization, modern CPU architectures are designed to al-

low fine-grained functionality which allows to control how the cache will be used.

One commonly found fine-grained method is the invalidation of a cache entry (from

all the cache levels). For example, the x86 processors may include the instruction

clflush 1, which takes a memory location as input and removes the associated cache

line from all levels in processor’s cache hierarchy. Now even though various com-

puting architectures support such functionality, it’s not always the case that such

functionality will be available in the user space. For example, clflush instruction is

x86 is available in all privilege levels, however in ARM processors the equivalent

instruction requires elevated privileges. Calling clflush is the fastest and the most

effective way of bypassing the CPU cache.

Another functionality often found in CPU architectures is support for non tem-

poral memory access. Primarily focused towards avoiding cache pollution with data

that are known not to be used in the near future, modern processors offer instruc-

tions that effectively bypass the cache for the specified memory access. The use

of Non-Temporal instructions for the Rowhammer attack was first mentioned in [6]

and successfully used in [7].

Cache Eviction The most intuitive way to direct a request to DRAM and avoid the

whole cache complexity is by filling the whole cache with irrelevant data. This can

be achieved by accessing a buffer that is as large as the last level cache. This way,

it is possible to evict a target cache line which was e.g. demonstrated in [8]. Even

though this technique is effective irrespective to the implemented cache coherence

policies, it is particularly ineffective within the context of Rowhammer. If we use it,

we need to cause eviction of the whole cache just in order to evict a much smaller

quantity of data related with the rowhammer attack. Accordingly, this technique is

typically considered totally impractical for Rowhammer.

A better way would be to achieve the eviction of a single block of data which

1The clflush instruction was introduced with Streaming SIMD Extensions 2 (SSE2) and its avail-
ability can be verified throughout its CPUID feature flag.
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includes a target memory location. For example, consider a CPU where Last-Level

Cache (LLC) is L3 and which implements any type of Inclusive policy, with a

known mapping function from the physical address space to that level cache L3.

In this case, one can evict this physical RAM address by just evicting it from the

LLC, i.e. L3. The set of addresses that is required to be accessed in order to generate

the eviction of the target is called Cache Eviction Set (CES)

This approach was initially taken by Seaborn and Dullien in [9] where they im-

plemented the Rowhammer attack for dual core processors based on Sandy Bridge

micro-architecture, which is known to have inclusive LLC. For the attack, they used

the mapping function that was reverse engineered in [8]. Later, Gruss, Clementine

and Mangard in [10] implemented the Rowhammer attack in Javascript with the

same methodology of bypassing the cache.

3.1.2 Requirement 2: Bypassing the Rowbuffer

The techniques described for bypassing the row buffer can be separated into those

that rely on first calculating the DRAM mapping from virtual address space all the

way to DRAM chip locations, and those that operate without precise knowledge

of that mapping. By successfully mapping the memory into the DRAM, the attack

can be more efficient, however it will often require special privileges or specific

assumptions about the target system which could be restrictive as we will see later.

In contrast, the second class of techniques may work with less privileges or target a

bigger range of systems.

Mapping Memory to DRAM The physical component of/for the CPU responsible

for the DRAM mapping is the memory controller. Upon receiving a memory trans-

action with a given physical address, the memory controller uses some logic to map

this address to the DRAM. This logic is documented in AMD CPU microarchitec-

tures but is kept secret by Intel. Since Intel possess the lion’s share of the CPU

market, this obstacle has limited significantly the ability of inducing the Rowham-

mer attack in the wide range of systems. Despite those mappings were kept secret,

researchers have managed to reverse engineer them [3, 11, 12]. In Figure 3.2 we can

see the mapping of the memory controller with a Sandy Bridge microarchitecture,
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Figure 3.2: Illustration of Sandy Bridge DRAM Mapping Found in [3]

in a system with 2-channels of memory with each channel composed by a single

DRAM module. As a result, in many cases the knowledge of the physical addresses

allows accurate calculation of the DRAM location on the chip.

The procedure of translating virtual to physical address is standardized and it

can be performed on every operating system by writing code that would manually

perform the ”Page-Walk2”. Even though possible, this is relatively complex and so

modern operating systems often offer some kind of interface for translating virtual

memory to physical. Linux offers this functionality through the pagemap interface.

Up to the Kernel version 4.0, it was allowed for userspace programs to use this

functionality. After the release of the first exploit based on the Rowhammer bug

[9] by Mark Seaborn and Thomas Dullien, the access to the translation information

became available only to privileged users. Windows operating systems do not offer

such functionality natively. Here it is possible to find where virtual memory of a

program is mapped for users with elevated privileges by using the WinDbg debugger

in kernel mode.

Initially, we should say that the ideal is to have a complete physical translation

of all attacker’s memory locations. But as explained above, the attacker may not

have this capability. In this case, the consideration of current OS page size can be

helpful. The page size is used in the physical address translation through the fact

that the virtual page offset is the same as the physical page offset (since memory is

allocated in page granularity). This allows us to partially map the addresses, with

2Page-Walk is a procedure usually executed by the Memory Management Unit to translate a
virtual address to a physical one.
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the accuracy level entirely dependent on the page size.

The most commonly supported page size among CPU architectures is 4KB.

When available, this is the default page size modern operating systems choose for

their operations. In that case, the 4KB do provide the 12 Least Significant Bits

(LSB) of the physical address which for the purpose of the Rowhammer attack will

not be sufficient for efficiency. This can be observed in Figure 3.2, where for the

given configuration, the 12 LSB provide only the channel information.

But even though the default page size is 4KB, both CPU and operating sys-

tems support bigger sizes as an optimization primarily to reduce the pressure in the

Translation Lookaside Buffer (TLB) 3. To give some perspective on the subject,

a 1GB memory allocation with 4KB page would result in 250K entries while for

example a 1GB page would result in just one entry. For example, x86-64 CPU ar-

chitectures support 2MB and potentially 1GB pages. In Windows, this optimization

is called large page support and special privileges are required for its use. In Linux

from the other hand, a feature called Transparent Huge Pages (THP), allows the au-

tomatic promotion (29 4KB pages to single 2MB page) and demotion (single 2MB

page to 29 4KB pages) of pages without requiring special permissions. In Linux

build for x86-64 microarchitectures, the typical page size used with THP is 2MB.

This particular page size provides essentially the 21 LSB of the physical address

which is more than enough to accurately map the memory to DRAM in various

configurations, as for example in the one listed in Figure 3.2.

Alternative to DRAM Mapping Here the attacker just tries to identify which ad-

dresses lead to Same Bank Different Rows (SBDR), a term defined in [3]. This is

expected to be the minimum requirement for launching a Rowhammer attack.

The first method for identifying addresses that map to SBDR is based on a

timing channel which was first described in [13] and it’s based on the way DRAM

works. A slight delay occurs when different rows within the same bank are re-

quested. This delay, even though it’s very small, it can be identified by using high

3TLB basically acts like a cache for the virtual to physical address mappings. It has a limited
space and a TLB miss generally is a very expensive operation.



3.2. Inducing the Rowhammer Bug 22

Table 3.1: Code for Inducing the Rowhammer Vulnerability

repeat:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
jmp repeat

precision timers4. Even without the possession of accurate counters, it is possible to

rely just on luck for hitting a particular bank. Given that the total number of banks

is often really small, by picking a small set of addresses it’s very probable to just

pick at least one within the target bank. This technique was used in one test-case

implementation by Seaborn and Dullien in [9].

3.2 Inducing the Rowhammer Bug
The basic approach for the Rowhammer attack, is to first choose a pair of addresses

with the SBDR property as described in §3.1.2. Then depending on the environ-

ment, a technique described in §3.1.1 should be chosen for bypassing the cache for

each memory access over the selected address pair. After that, the the aggressor

rows and the expected victims are initialized with a specific pattern. Traditionally,

the aggressor rows are set to 0x00 and victim rows to 0xff, but different patterns

could be used as well.

Then we start the ”hammering” procedure as follows. For a certain number

of iterations, the SBDR address pair is repeatedly accessed (reading only), with

each access directed to DRAM using one of the cache bypass techniques. After

the given number of iterations is completed, the rowhammer attack is succeeded if

at least one of the victim rows had its memory contents changed. The number of

iterations should be specified (ideally) as an integer multiple of the total number of

memory accesses that can be performed within the DRAM refresh period. The code

of this process is displayed in Table 3.1. The efficiency of the attack heavily relies

4 CPU counters can be used for the task of high precision timing. For example, in x86 pro-
cessors, this can be achieved though the Time Stamp Counter (TSC), which is a 64-bit register that
counts the number of cycles since last reset.



3.2. Inducing the Rowhammer Bug 23

on the way the SBDR pair is chosen and this is what we will discuss next.

3.2.1 Single Sided Rowhammer

In single-sided Rowhammer, the only requirement for the selected address pair is

to be SBDR. This was the original approach used in [4]. Even though this kind of

address selection has the minimum number of requirements, it is the least efficient.

3.2.2 Row Targeted Rowhammer

In the targeted approach, the selection of the SBDR addresses depends on the dif-

ference of their corresponding row numbers in DRAM. So for the success of this

attack, it is necessary to have a way to obtain the DRAM mapping as was described

in §3.1.2.

As was discussed earlier, the crucial parameter in this attack, is the distance

between the targeted rows. When the distance is equal to two, the targeted approach

is called Double-Sided Rowhammer and it was suggested initially in [9]. Through

experimentations, this hammering setup was found to be the most efficient and it

is considered to be the ideal method for performing the Rowhammer attack. When

the double-sided Rowhammer attack was performed, it was observed that the most

affected row (the most bitflips) was the one between the two aggressor rows, even

though a limited number of bitflips had been observed in the neighboring rows as

well. The diagram of this attack can be seen in Figure 3.3

Researchers in [10] also explored the possibility with row distance equal to

1, with adjacent rows. This attack was named Amplified Rowhammer Attack and

even though it is less effective than the double-sided Rowhammer in the ”bug”

identification phase, it could be more efficient in the exploitation phase. This is

due to the fact that by using adjacent rows on the page boundaries, it is possible to

cause bit flips on memory that is not currently allocated to the attacker. That way,

on the exploitation phase, the attacker will not have to wait for the victim row to get

swapped in order to get it allocated to the target. Of course, this assumes that the

page spans over multiple rows and that the attacker does not have into his disposal

commands to deallocate some memory selectively. This was true for example in
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Figure 3.3: Illustration of Double Sided Rowhammer, Source: [2] (Modified)

the Javascript environment where the memory allocated was also backed by Huge

Pages which was the case studied in [10]

3.3 Rowhammer Bit Flips Exploitation
The first documented technique for exploiting random bit flips was described orig-

inally by Govindavajhala et al. in [14], where they managed to break out of a Java

VM by heat induced bit flips. Their exploitation strategy was to target a structure

in memory which even with a single bit flip could break the underlying security as-

sumptions of the system. Even though that particular attack was mostly theoretical,

since they used a special lamp for the generation of the heat, it became practical with

the Rowhammer vulnerability. So, by using similar exploitation principles with the

original paper, Mark Seaborn and Thomas Dullien in [9] released the first exploit

based on the flipped bits induced by Rowhammer.

One important aspect of the attack is how to make the bit flips occur in the

target memory structure. There are two possibilities, either spray the whole memory
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Table 3.2: Sandbox Evasion Example

Illustration of the code provided in [9] for sandbox evasion
Original Code:
Opcodes Instructions
83 E0 E1 andl $∼31, %eax // Truncate address to 32 bits

// and mask to be 32-byte-aligned.
4C 01 F8 addq %r15, %rax // Add %r15, the sandbox base address.
FF E0 jmp *%rax // Indirect jump.

Code After Bit Flip:
Opcodes Instructions
83 E2 E1 andl $∼31, %ecx // Truncate address to 32 bits

// and mask to be 32-byte-aligned.
4C 01 F8 addq %r15, %rax // Add %r15, the sandbox base address.
FF E0 jmp *%rax // Indirect jump to unsanitized register

with the target structure or the more targeted approach, which requires knowledge

of were in memory the bit flips occur but also the capability of mapping into that

memory the targeted structure as well. All the exploits presented on Rowhammer

can be classified based on these two attack primitives.

3.3.1 Spraying the Memory

One of the two exploits presented in [9] was a sandbox evasion. The idea behind this

exploit was to first create a specially crafted piece of code. This piece of code should

have the property that even with a single bit flip would yield with high probability a

new code that would bypass the security assumptions of the sandbox. The next step

was to create multiple instances of that code and wait until it eventually gets mapped

into a vulnerable row. In Table 3.2 we can see an illustration of this exploitation

technique. As it is shown in the first table, the original code has multiple locations

where a bit flip could result in successful exploitation. In the second table we can

see one such example were the bit flip in the first instruction caused the truncation

of ecx instead of eax. Since eax is directly controlled by the attacker, at the end,

there is a transfer of control flow to a location directly influenced by the attacker.

The other exploit presented in [9] targeted the Page Table structure described in

§2.2. The first step in this attack was to repeatedly map a shared region in memory.
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Figure 3.4: Page Table Exploitation

This repeated action caused the memory to reach a state where it’s mainly filled

with Page Tables and the single shared region where the Page Table Entries (PTEs)

point onto. After reaching that state, the rowhammer attack is utilized to alter a

translation entry of a PTE and gain access to an attacker’s Page Table, something

that is equivalent to full memory access. We can see the graphical representation of

the exploitation process in Figure 3.4. As we can see in the diagram, the memory is

filled with Page Table Entries (red regions) that point to the shared memory. After

a bit flip in one PTE, the attacker will most likely get access to a Page Table. Now

the attacker equipped with access to a Page Table, he can modify his own PTE

which essentially allows him to arbitrarily read/write anything into the memory.

This primitive can be then used for privilege escalation, as it was illustrated in [9].
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3.3.2 Targeted Approach

Memory deduplication is a commonly abused feature in the context of Rowhammer.

This is due to the fact that it could allow the placement of potentially sensitive

data in rows controlled by the attacker. This has of course the prerequisite of the

attacker already knowing the content of that sensitive data. Based on this technique,

researchers in [15] managed to take control of a Microsoft Edge Browser running on

Windows 10 without depending on any software vulnerabilities. This technique was

also utilized in [16], where researchers abused the memory deduplication feature to

map RSA public keys and update urls on vulnerable to Rowhammer rows, which

ultimately allowed them to exploit both SSH as well as the update mechanism of

debian based distributions. Even though memory deduplication can be used very

efficiently for the Rowhammer attack, it should be noted that is not enabled by

default in modern operating systems5.

Another targeted approach was shown in [12]. The researchers abused the

memory management conducted in Xen paravirtualization environments which ul-

timately allowed them to replace a whole page table with a forged one. With con-

trolled access to a page table structure they essentially managed to gain control of

the whole memory of the system, similarly to the attack presented in [9].

A more calculated approach was followed in [17]. They studied the behavior

of the physical memory allocator in android phones and through specific allocation

patterns they managed to force it to allocate memory from predictable regions of

memory. By using this predictable allocation patterns, they managed to launch the

Page Table attack and perform privilege escalation in ARM devices without relying

in system-dependent features.

5In Windows 10, memory deduplication is disabled by default as a mitigation measure against
the attack described in [15]



Chapter 4

User-Space Rowhammer Testing

Implementations

For the purpose of this thesis we have implemented three Rowhammer testing tools

that differentiate from the rest of the tools with regards to the fact that they do not

depend on the pagemap interface. The first tool is based on the Transparent Huge

Pages (THP) feature and the other two on the SBDR timing channel. At the end, we

provide information on some of our experimentations that did not result in fruitful

outcomes.

4.1 THP Based Implementation

4.1.1 hprh

Our first tool is called hprh (huge page rowhammer)[18] and its operation depends

on having allocated 2MB chunks of contiguous memory (THP feature). Now, as

we can see for example in Figure 3.2, this requirement essentially allows us to map

addresses within that region in their exact bank within the DRAM. It does also

provides as with the three least significant bits of row mapping within that specific

bank. Now taking into consideration the fact that all addresses within that 2MB

region map to the same Page Frame Number or PFN1 (since they are all part of the

same (huge) page), having the 3 least significant bits of the row means we have 8

1PFN are the remaining bits when the page offset bits are removed. For 2MB pages,
PhysicalAddress=PFN·221+PageOffset
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consecutive rows within each bank. From that point on, we have all the necessary

information to launch the double-sided rowhammer attack and this is exactly what

we do in our implementation. Since the double-sided attack is considered to be

the best way of identifying vulnerable rows, comparing our tool with the respective

implementation that required the use of pagemap yielded about the same number

of identified bit flips. In our implementation, we do also take into account the fact

that regular sized pages (4KB) may be promoted in our case to 2MB pages only

if their address is 2MB aligned. So, in order to optimize our implementation for

smaller areas of allocated memory, we request additionally 2MB to the original

buffer, and we set manually the returned buffer address to the next 2MB aligned

address2. That way, we can start generating bit flips from the beginning of the buffer.

Initially for the 2MB aligned address we used the posix memalign, but through our

experimentations we noticed that with this method we got a slight performance

hit on the number of induced bit flips and that’s why we worked around it. In

addition to our implementation, we provide patches for the rowhammer-test[19]

and hammertime[20] that extend their functionality to support THP.

4.2 SBDR Timing Channel Based Implementations

4.2.1 tcrh

The next tool we implemented is called tcrh[18] (timing channel rowhammer). This

tool is based on the timing channel in DRAM described in §3.1.2. For its opera-

tion, it initially builds a set of addresses that map to the same bank. That way, the

total number of memory locations that have to be scanned for vulnerable rows is

immediately reduced to 1/16 (assuming uniform distribution of the data across a

single DRAM module with 16 banks). It then proceeds by testing each memory

location in that set with the rest in that set. One problem we had with this approach,

even though the number of the locations we had to test was significantly lower than

the number we started with, it was still very slow. In order to speed up the proce-

dure, we have essentially reduced the number of DRAM refresh intervals on which

2bu f = (bu f +221 −1)&∼(221 −1).



4.2. SBDR Timing Channel Based Implementations 30

the hammering function spans over. Through our experiments, we discovered that

even though the number of bit flips per row were decreased, the vulnerable rows

were still identified. Next, after identifying vulnerable rows, we hammered again

the target addresses with bigger number of iterations in order to uncover the vul-

nerable memory cells that didn’t flip because of the low number of memory access

iterations.

Another optimization that we included in this testing program is after finishing

the stage of identifying memory locations that map to the same bank, to try and

identify memory locations that map to the same row. In this case we used the same

timing channel as before, but instead of selecting memory locations that have big

access delay, we gathered the ones that have small access delay, since addresses that

map to the same row will be served from the row buffer. With that optimization in

place, we managed to decrease the number pages we had to test by about 25%, a

percentage that ultimately corresponds to the performance increase.

After implementing and experimenting with tcrh we came up with two obser-

vations. The first thing was that sometimes the mapping to the banks was not very

precise. After spending some time tweaking our timing parameters, we discovered

that the problem was inside the reverse engineered mapping function. As it turned

out the rank selection included the next bit after the bank selection as well, which

after we included in our calculations the accuracy of our results increased signifi-

cantly. The new mapping function can be seen on Figure 4.1. The second observa-

tion came after analyzing the logs generated by the program. What we found out is

Figure 4.1: The New DRAM Mapping Function
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that the difference between the addresses used for hammering was divided in some

constant value groups, commonly within the range of 100KB. We speculated that

this behavior was related with the fact that the Linux kernel was trying to allocate

contiguous physical frames when possible. After experimenting and monitoring the

kernel allocation patterns we managed to verify our theory. Based on the second

observation, we further optimized the tool to ”hammer” rows that their distance is

within a predefined range. This optimization provides a significant increase in the

efficiency of the tool with just a small sacrifice of missing a small percentage of

vulnerable rows that their distance is out of our range, something that is negligible

in the overall results.

4.2.2 thrh

Based on our findings through the tcrh’s second observation, we created a new tool,

called thrh. What makes thrh different from tcrh is its more targeted approach in

the tested rows. The main operation of this tool is to determine whether a region

in memory is contiguously mapped and only then start hammering the identified

region. This was achieved by scanning the whole memory for regions where we

could predict addresses inside them that mapped to the same bank but different

rows, based on the assumption that the given regions were contiguously mapped.

Normally, the probability of hitting such a pair is at least 1
8 (number of banks),

so its success signifies that at least the region between those two addresses could

potentially be contiguous. Even though the development of this tool came at a

late state of the whole project and so we didn’t have enough time to optimize it as

we wanted, we were able to verify that our current implementation was capable of

identifying contiguous regions with high probability.

4.3 Further Experimentation
With the completion of the implementations that ultimately dependented on the

clflush instruction for the cache eviction, we tried experimenting with Cache Evic-

tion Sets. We have tried every tool publicly available that was based on CES and

we extended our own tools to include such functionality as well. Unfortunately, we
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didn’t manage to induce any bit flips even though it was verified through the perfor-

mance counters that our implementation had 95% eviction rate. We speculate that

the reason behind this result could be the memory bandwidth of our processor and

that’s why we believe that with a different processor we could have achieved better

results.

After our experimentations in Linux we transitioned to Windows platform

where interestingly enough we didn’t manage to induce any bit flips. Our first

attempt was to port our hprh to Windows. The application was relatively portable,

we only had to replace the Linux memory allocation function with the Windows

equivalent. The final step in the transition was to allocate 2MB pages for our appli-

cation. Windows does offer such page sizes through their allocation function and

so we managed to take care and of that final obstacle. Before running the program

we verified that we were getting a buffer which was indeed appropriately aligned

for 2Mbyte pages. Everything looked like they were in place, but after running the

program no bit flips were observed. The code was compiled in Visual Studio 2017

and we have tried building the program with different compiler parameters without

any results. We have also tried the tcrh, which even though it looked like it managed

to map the addresses to the correct bank, it failed to induce any bit flips.



Chapter 5

Experiments

For our experiments we used a DELL NH6K945 laptop, with Intel Core i7-

2760QM CPU @ 2.40GHz and a single 8GB DRAM module with model num-

ber M471B1G73QH0-YK0. The operating system for our experiments is Ubuntu

16.04.2 LTS with kernel version 4.10.0-28. For the experiments run within VMware

Virtual Machine, the guest operating system was Ubuntu as well with the same

kernel version with the host machine. The tools assessed in our experiments are

rowhammer-test, rowhammerjs, hammertime and the tools provided as part of this

thesis hprh, tcrh, thrh as well as extensions for rowhammer-test and hammertime.

Before moving into the description of the experiments, we will provide some imple-

mentation details of rowhammer-test, rowhammerjs and hammertime for the better

interpretation of the upcoming results.

5.1 Implementation Details of Already Existing Tools
rowhammer-test Mark Seaborn and Thomas Dullien released a number of tools for

the purpose of testing the rowhammer vulnerability along with their bug exploita-

tion research in [9]. The only tool capable on inducing bit flips in our configuration

was their double-sided rowhammer implementation, and from now on this is the

tool that we will refer to with the rowhammer-test. Moving to the implementation

details, this tool has two major weaknesses. The first one is that is designed to test

for the rowhammer vulnerability in Sandy Bridge processors with two channels of

memory, each consisted with a single DRAM module with each module composed
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by two ranks. The second weakness is on the implementation of the DRAM map-

ping function, where they take into account only the row numbers. As such, time

is wasted testing for rows that belong to different channels/ranks/banks, which in

the context of rowhammer is useless as we have discussed in §3. None of these

two points are mentioned in the tool’s description which was the reason for a lot of

wasted time and frustration when we initially started experimenting with rowham-

mer.

The other tools released by the researchers were a single-sided version for test-

ing the rowhammer bug as well as a version that was based on Cache Eviction Sets

(CES). The single-sided version implemented the Random Pick technique described

in §3.1.2, by creating a set of eight random addresses which they hammered simul-

taneously in each iteration. This approach turned out to be inappropriate for our

configuration. We have also experimented with the other tool that was based on

CES, which even after modification to support our 4-core Sandy Bridge processor,

we did not manage to induce any bit flips. That’s why none of the two tools are

included in our experiments.

rowhammerjs Daniel Gruss, Clementine Maurice and Stefan Mangard along with

the research in [10], released a new rowhammer testing tool. It is a fork of

rowhammer-test with the addition of a custom DRAM mapping function. In their

implementation, they set up the DRAM mapping function to take as input data pro-

duced by DRAMA Reverse Engineering Tool, a tool released by the same researchers

to dynamically reverse engineer the DRAM mapping functions and it was part of

[11]. At this point it should be noted that the output of DRAMA Reverse Engineer-

ing Tool was further processed to completely reverse engineer the mappings in the

original research. The fact that this tool uses this output directly may prove to be

inappropriate but nevertheless this tool is more portable than rowhammer-test since

it could theoretically function across different CPU microarchitectures and different

DRAM configurations.

rowhammerjs also provides functionality for using Cache Eviction Sets (CES)

instead of CLFLUSH, but even after customization of the code to work on our
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Table 5.1: The operational characteristics of the various tools on Rowhammer testing. The
4 denotes that the underlying operation can be completed in user space while
the 4 denotes that elevated permissions are required. The + signifies that the
given functionality is offered as an extension throughout our repository. The
tools marked with ∗ are implemented within the scope of this thesis.

DRAM Mapping Cache Eviction
pagemap THP TC CLFLUSH CES

rowhammer-test[19] 4 +4 - 4 4

rowhammerjs[21] 4 - - 4 4

hammertime[20] 4 +4 - 4 -
hprh[18]∗ - 4 - 4 -
tcrh[18]∗ - - 4 4 -
thrh[18]∗ - - 4 4 -

configuration (Sandy Bridge), it was not possible to induce any bit flips. That’s why

it’s not included in our tests. It should also be noted that the cache eviction loop

implemented in the program targets the Haswell microarchitectures (something that

is not mentioned in the tool’s description.)

hammertime This tool was created by Andrei Tatar and was released as part of the

research conducted in [17]. hammertime, at the time of writing, is the most com-

prehensive tool for testing the rowhammer vulnerability. For the DRAM mapping

function, they included primarily the results produced by the research conducted

by the authors of the previously discussed tools, with some extensions of their own

to support even more CPU microarchitectures and DRAM configurations. Unlike

rowhammerjs, the program dynamically identifies the system information and ac-

cordingly selects the appropriate function out of a list of predefined functions. The

list of predefined functions targets multiple microarchitectures so this cannot be

considered as a limitation. Finally, this tool also implements the eviction of the

cache before checking for potential bit flips, which theoretically should provide

some boost over its performance.

Summary In Table 5.1 we provide an overview of the tools and their features that

they implement for testing the Rowahammer attack.
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5.2 Measurements
For the measurements, we initially group the tools into 4 categories based on the

underlying technique used for mapping the memory to the DRAM. In each category

we use different test configurations to either allow the tools to function optimally

or to emphasize on their weaknesses. The actual parameters used for the tests are

the buffer size as well as the time each tool will have at its disposal to induce the

maximum number of bit flips.

For the tools based on pagemap and THP, the first test configuration is set

to assess their efficiency in inducing the rowhammer vulnerability while remain-

ing stealthy, by utilizing a small buffer (2MB) for a limited amount of time (one

minute). For the second test, there is a 256MB buffer which the tools have at their

disposal to ”rowhammer” for ten minutes. This test aim to provide the information

of which tool is best for inducing the bug in general.

The testing parameters for the tcrh and thrh were set separately since they

operate on a completely different premises. For tcrh, the buffer size was set to

16MB and 32MB for total run time of 20 minutes. The buffer size was decided

after observing that 16MB was the minimum buffer size for which there were pages

allocated that mapped to three consecutive rows.

The thrh’s parameters were set to 512MB and 1GB for 1 minute and 10 min-

utes respectively. The buffer size was chosen heuristically, after running multiple

experiments and studying the memory allocation patterns. Through that experi-

ments, it was observed that the bigger the memory allocation the more like it was

for the kernel to allocate big chunks in memory contiguously. The chosen sizes

were a compromise between the ideal and realistic scenarios.

The results can be observed in Table 5.2

5.3 Discussion
Based on pagemap First thing that we notice in this table is the inefficiency of

the tools to induce bit flips when tested in a small buffer size. This is primarily

attributed to the fact that with only 2MB of buffer, the programs cannot find pages
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Table 5.2: Performance Results (Total Number of Induced Bit Flips)

Based on pagemap
2MB 1MIN 256MB 10MIN

Native VM Native VM
rowhammer-test 0 0 8 0
rowhammer-js 0 0 1322 66
hammertime 0 0 25983 1177

Based on THP
2MB 1MIN 256MB 10MIN

Native VM Native VM
rowhammer-ext 932 0 6016 5
hammertime-ext 1911 0 25965 46
hprh 2301 0 25003 63

Based on the Timing Channel
16MB 20MIN 32MB 20MIN
Native VM Native VM

tcrh 256 346 187 150

Based on Kernel Allocation Patterns
512MB 1MIN 1GB 10MIN
Native VM Native VM

thrh 894 613 4649 4322

that map to three consecutive rows to perform the double-sided rowhammer test.

Nevertheless, we can see that for the 256MB buffer size, all the programs man-

aged to induce at least couple of bit flips. As expected, hammertime achieved the

highest number of induced bit flips since as it was discussed, it’s the tool that has the

most accurate DRAM mapping functions. Its optimization with the cache eviction

gave it an extra boost of about 25% more bit flips. rowhammer-js even though we

can see that it performed significantly better than rowhammer-test, its inaccuracy in

the DRAM mapping function implementation created a significant gap between its

performance and the performance of hammertime.

The results within the virtualized environment as expected were significantly

lower. This is primarily due to the fact that within the guest virtual machine, there

is another layer of indirection for the virtual address translation. The guest ma-

chine has its own view of physical memory, the guest physical memory which is
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then translated to the machine’s physical memory. Since the pagemap interface has

access only to the guest’s physical memory, there is no accurate physical address

translation. Nevertheless, when a chunk in both guest’s physical memory and in ma-

chine’s physical memory is allocated contiguously, the addresses within that chunk

are are mapped accurately relatively with each other. It’s the same concept on which

hprh depends upon and was described at the beginning of this chapter. As such, the

decreased performance of every tool is justifiable with hammertime still on the lead.

Based on THP For this category of tools, we can observe that each and every one

of them was capable of inducing bit flips in the small buffer setting within the native

environment. This is mainly due to the fact that with THP enabled, the tools are very

likely to have a physically contiguous space allocated (assuming the memory is not

under pressure) which as we have discussed in the beginning of the chapter allows

them to efficiently perform the double sided rowhammer. We can also observe

here that our implementation hprh has an advantage of about 20% over the second

best performance of hammertime and since both have the same core operation, we

attribute this difference to the simplicity of our implementation.

On the 256MB buffer test, we can instantly observe the difference in the

rowhammer-test’s performance, after the implementation of the DRAM mapping

function. Still, the rowhammer-test was in a significant disadvantage when com-

pared with the other two tools, but here we display how much of a difference a

properly implemented mapping function can have on the results. Moving on to

hammertime-ext and hprh we can observe that both have identical performance with

hammertime having a slight edge. At this point we should note that through a slight

modifications of the hprh, it was possible to induce more bit flips for this particular

scenario. For example, by adding a delay of one second every 30 seconds, it was

possible to reach higher numbers than hammertime consistently. Nevertheless, we

chose to leave it as it is due to the fact that all those optimizations were considered

minor with some of them potentially applicable to the rest of the tools as well.

Based on Timing Channel On this table we observe that tcrh managed to induce

a significant number of bit flips when considering the fact that it didn’t depend on
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neither pagemap nor THP. The fact that it depends on the timing channel allows

it to operate properly in both native and virtualized environments, something that

can be observed from the results. Nevertheless, due to its nature of blindly testing

all the available rows for the vulnerability causes a significant drop to the number

of induced bit flips when compared with the tools that perform a more targeted

approach.

Another interesting observation on the results is the fact that tcrh performed

better on the smaller buffer size, something that comes in contrast with the behavior

of the previously tested tools. Before we run our experiments, we knew that the

smaller buffer size would result in more rows getting tested. What we didn’t know

is if that smaller buffer would include memory regions mapping in rows that are

capable of inducing the rowhammer vulnerability. As the results has shown, in the

limited time frame, the 16MB of buffer is more suitable for inducing the maximum

number of bit flips and for this result

Based on Kernel Allocation Patterns In the final table, we can observe that thrh

performed with the same efficiency in both native and virtualized environment. Re-

garding its performance in the two configurations, through the results we can see

that it is linearly dependent on time. This of course depends on its ability to find

a contiguous chunk big enough to allow the test to run for the given time frame.

For example, a 2MB buffer can be exhaustively tested in one minute, so if there

is a need for statistics for a two minute time frame, then a buffer of at least 4MB

has to be identified. Finally, we can observe that thrh can performed similarly in

both native and virtualized environments, with the total number of bit flips being

slightly higher in the native environment. We speculate that this slight difference

is linked with the fact that the identified region in memory has to be contiguous in

both guest’s physical memory as well as the machine’s physical memory. Of course

the buffer don’t have to be aligned and with even a small overlap between the two

we can efficiently perform our attack. For example, in the test configuration, the

overlapping region would have to be at least 2MB since we are only testing it for a

minute. So, with the kernel allocating contiguous chunks of even 256MB, we can
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see that this 2MB is very likely to overlap. All in all, thrh can be viewed as the

combination of tcrh and hprh, it has the requirements of the former while having

the potential of achieving the performance of the latter.



Chapter 6

Conclusion and Future Work

The Rowhammer attack revolves around a lot of complicated concepts. In this

report we aim to shed some light into those concepts, study the internals of the

Rowhammer Attack and clarify the requirements on which a successful attack really

depends on. We then provide three implementations that are capable of inducing the

Rowhammer attack in userspace as well as their performance evaluation. Through

the results, it becomes obvious that the pagemap interface can be efficiently substi-

tuted by using the described techniques. Since those techniques can be utilized in

userspace, we open the way for further research into the actual exploitation of the

vulnerability.
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