

Next Talk: Fault Attacks → on PCs?! → → and without root privileges?! →

"On Feasibility and Performance of RowHammer Attack"

Nicolas T. Courtois Varnavas Papaioannou University College London, UK

Security of Bitcoin

Dr. Nicolas T. Courtois blog.bettercrypto.com

1. cryptologist and codebreaker

UNIVERSITY CIPHER CHAMPION

March 2013

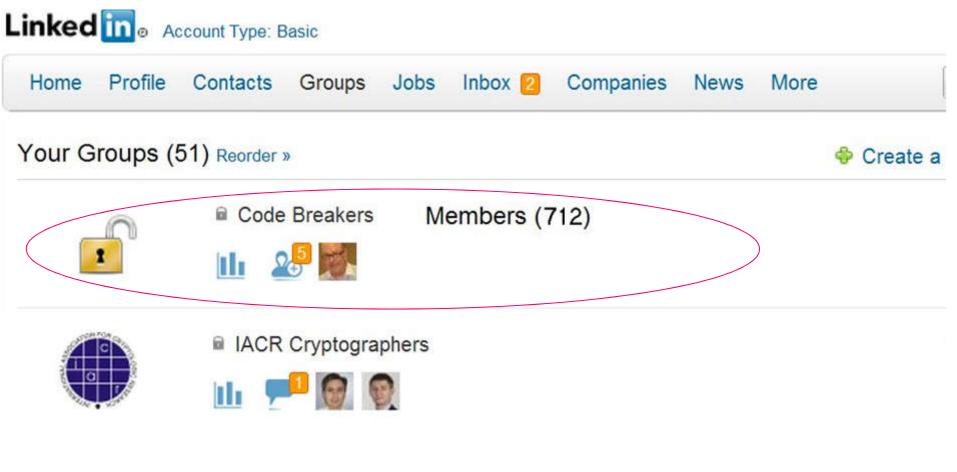
2. payment and smart cards (e.g. bank cards,

Oyster cards etc...)

Oyster cracker vows to clone cards

Cloning kit could sell for just £200, says researcher

Robert Blincoe, vnunet.com, 28 Jul 2008


LinkedIn

LinkedIn

UCL London: 4 COMPGA18 Cryptanalysis

Fault Attacks on PCs

• Fault Attacks on PCs

- [NEW: high performance, avoid root privileges]

boring? technical?

- Earlier historical context: smart cards
- Fault Attacks on PCs

- Even Earlier: Cold War crypto, DC history etc.
- Earlier historical context: smart cards
- Fault Attacks on PCs

secure against fault attacks!

Crypto History

CRYPIOLOGIA

EDITOR-IN-CHIEF

Craig Bauer York, PA, USA cryptoauthor@gmail.com

REVIEW EDITOR

Chris Christensen

christensen@nku.edu

Cipher A. Deavours Department of Mathematics Department of Mathematics Northern Kentucky University Kean University of New Jersey Highland Heights, KY, USA Union, NJ, USA cdeavours@kean.edu

> David Kahn New York, NY, USA DavidKahn1@aol.com

EDITORIAL BOARD

6500 Walker Branch Dr. Laurel, MD, USA rihanvok@verizon.net

David Hatch Center for Cryptologic History. National Security Agency, Fort Meade, MD, USA dahatch@nsa.gov

Joshua Brandon Holden Department of Mathematics, **Rose-Hulman Institute** of Technology, Terre Haute, IN, USA holden@rose-hulman.edu

David Joyner Mathematics Department, United States Naval Academy Annapolis, MD, USA wdj@usna.edu

David Kahn Great Neck, NY, USA 1 10 1 10 1

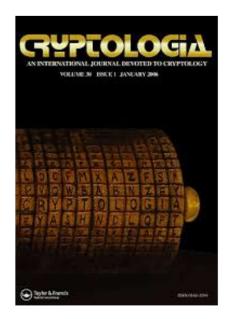
FOUNDING EDITORS

Brian J. Winkel Editor Emeritus Dept. of Mathematical Sciences United States Military Academy West Point, NY, USA brianwinkel@byc.rr.com

Greg Mellen Editor Emeritus In Memoriam

Louis Kruh Editor Emeritus In Memoriam

David Naccache Ecole normale supérieure, Département d'informatique, Paris, France david.naccache@ens.fr


Raphael C.-W. Phan Multimedia University, Malavsia raphaelphan.crypt@gmail.com

Klaus Schmeh Gelsenkirchen, Germany klaus@schmeh.org

Alan T. Sherman Department of Computer Science & Electrical Engineering. University of Maryland, **Baltimore** County Baltimore, MD, USA sherman@umbc.edu

William Stallings USA, ws@shore.net or http://williamstallings.com/

Frode Weierud

Nicolas T Courtois

9

Editorial Assistant Dante Molle Roseto, PA, USA dante42.13@gmail.com

Kent D. Boldan Queens College. The City University of New York, NY, USA boklan@boole.cs.qc.cuny.edu

Stephen Budiansky Leesburg, VA, USA sb@budiansky.com

Augusto Buonafalce San Terenzo, Italy augusto@cdh.it

Colin Burke Columbia, MD, USA burke@umbc.edu

Ian Bury Cardinal Stefan Wyszynski University, Warsaw, Poland j.bury@uksw.edu.pl

Nicolas T. Courtois Computer Science, University College London.

Whitfield Diffie Center for International Security

and Cooperation, Stanford University, Stanford, CA, USA diffic@stanford.edu

Ralph Erskine Parliament Buildings, Stormont, Belfast, Northern Ireland, UK erskine_ralph@yahoo.co.uk

Wes Freeman Mr. View, CA, USA wesf@worldnet.att.net

David W. Gaddy Tappahannock, VA, USA dwgaddy@verizon.net

James J. Gillogly Los Angeles, CA, USA scryer@gmail.com

Lee A. Gladwin

Bob Hanvok

[Crypto] Fault Attacks [in Cybersecurity]

- Powerful
- Difficult to make [technical difficulty + countermeasures + good security engineering]

Defense in Depth!

Computer systems have multiple layers, e.g.

- HW components
- Chipset/MB
- Kernel Ring 0
- OS
- UAC
- HTTP sandboxing
- Java script



Computer systems have multiple layers, e.g.

- HW components *
- Chipset/MB
- Kernel Ring 0
- OS
- UAC
- HTTP sandboxing
- Java script

Who Wins?

Attackers or Defenders?

14

Fault Attacks in Cybersecurity

DFA =

DFA Attacks...

(Differential Fault Analysis)

- 1. Provoke faults in the device,
- 2. Deduce the key by detailed mathematical analysis.

DFA Requirements

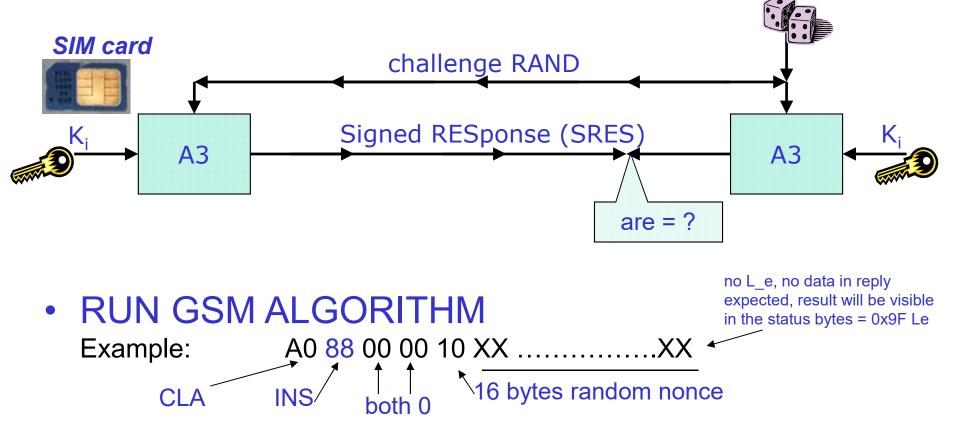
One needs to be able to run the same crypto algorithm many times with the same inputs.

The inputs do NOT need to be known.

• they usually are, but today we will realistic example when they aren't (!) and yet the key is found.

DFA requires

 \Rightarrow a DETERMINISTIC crypto process with a known output (from which the attacker wants to extract the secret key)

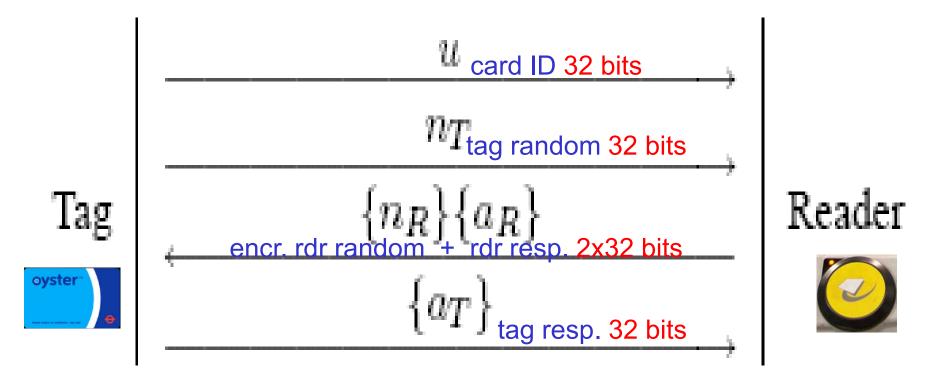

Examples when this happens:

Courtois et al

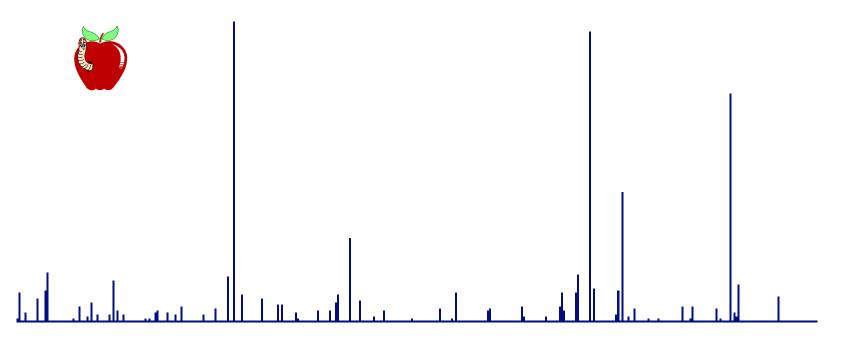
GSM SIM card Authentication

In Contrast – 3G USIM Cards

No DFA attack, 2 reasons:


- the base station is authenticated first!
- the SQN should be checked for freshness.
 - so the card should never accept to do the same crypto computation twice

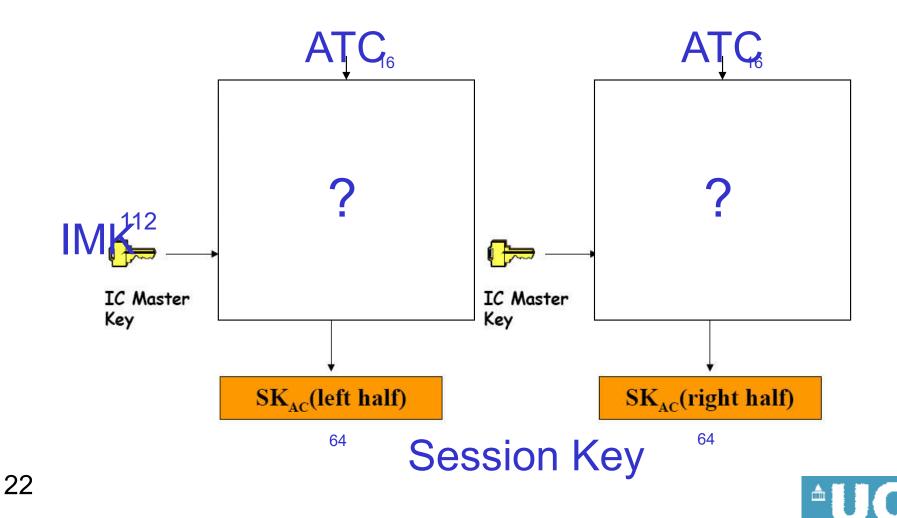
Courtois et al


In Contrast – MiFare Classic

The reader is authenticated first ! No DFA attack unless card random repeats

Example: London Oyster Card From 2006

- Min-entropy = 2.8 bits.
- Courtois Dark Side Attack time 2^{2.8} x 10 s = 3 minutes per key extracted from the card [theoretical speed].



Courtois et al

UCL

In Contrast – Bank Cards

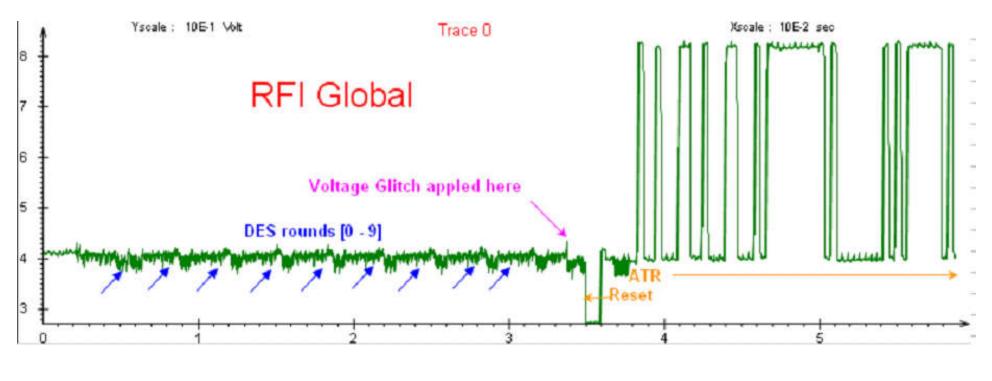
Assuming ATC is always incremented => Session Key depends on ATC => Impossible to get the same cryptogram twice => DFA is impossible!

Conjecture/Claim: [Courtois@eSmart 2010]

Fault attacks are feasible in practice

only when the industry uses BAD PROTOCOLS ?

commercial security=>bad security?


Fault Attacks in Practice on [Unnamed] Smart Cards [Courtois Jackson Ware, eSmart conference, France, 2010]

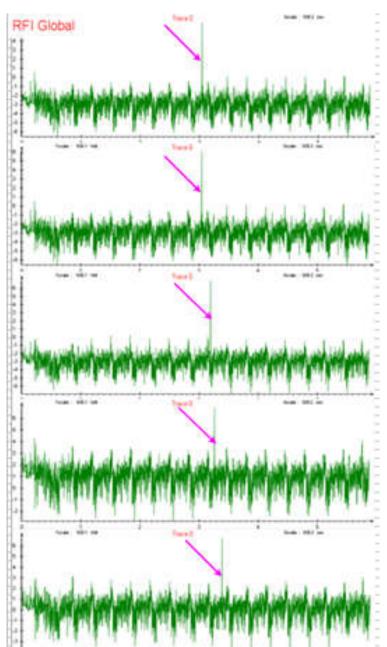
Lab Work

- Voltage glitch applied close to the final round.
- Triggers ATR defensive behaviour, attack detected.

UCL

e-Smart 2010

Courtois et al


Glitches in 8th Round

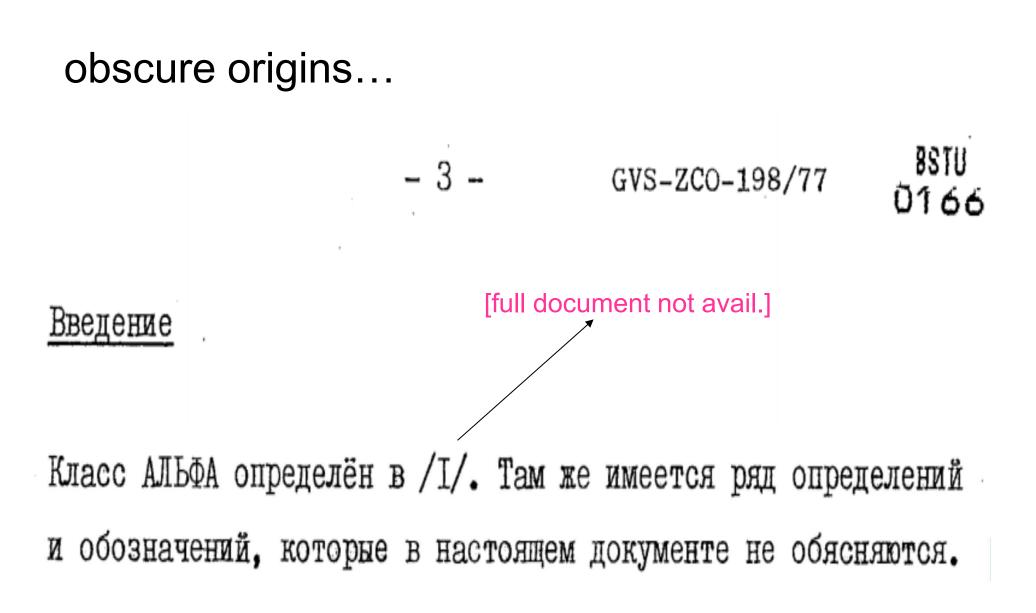
Done 5 consecutive faults

with precise timing and consistent perturbation type:

run	DES input										
0	11	22	33	44	55	66	77	88			
1	11	22	33	44	55	66	77	88			
2	11	22	33	44	55	66	77	88			
3	11	22	33	44	55	66	77	88			
4	11	22	33	44	55	66	77	88			
	Correct output										
	6B	67	6D	80	4A	EF	78	59			

		DES faulty outputs						
84	27	FF	D5	49	44	D3	01	
Ε6	E 8	8F	83	58	61	92	A1	
AC	FE	B9	10	54	57	AC	B7	
СВ	94	12	66	FF	94	85	8E	
DO	E7	5E	DE	A5	C1	CE	D7	

26



Cold War Differential Cryptanalysis and Fault Attacks

Eastern German Block Cipher Class Alpha = c.1970

T-310

East German SKS V/1 and T-310

240 bits

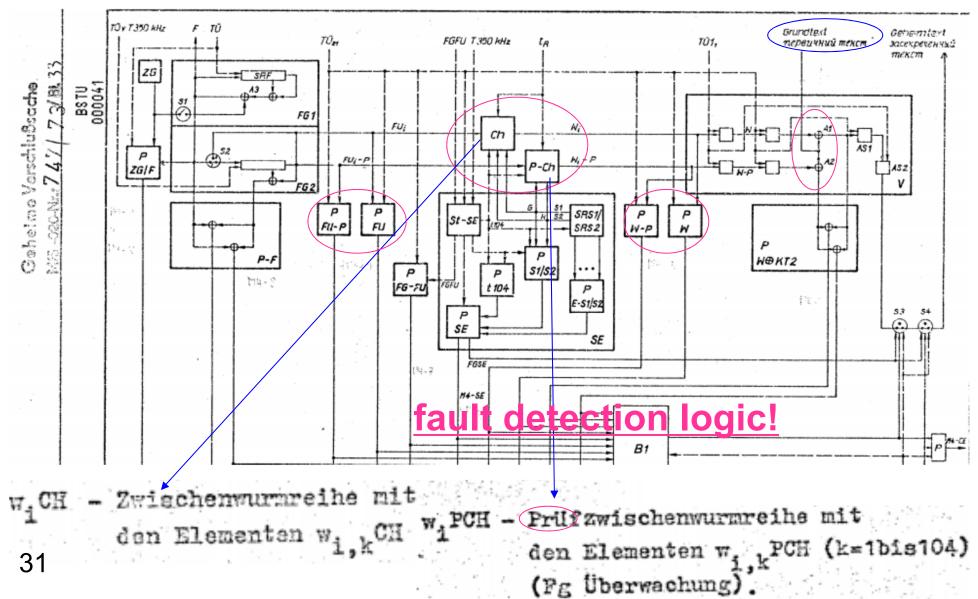
"quasi-absolute security" [1973-1990]

long-term secret 90 bits only!

T-310 is SECURE against Fault Attacks

On two accounts:

- ⇒ has a physical RNG=>IV =>cannot do encryption twice
- \Rightarrow everything is **DUPLICATED**



Fault Attacks

Security Against Fault Attacks:

=> obligatory in Eastern Bloc Cryptography in 1973!

Differential Cryptanalysis = DC

Wikipedia DC entry says: In 1994 [...] IBM [...] Coppersmith published a paper stating that DC was known to IBM as early as 1974.

Coppersmith explains: "After discussions with NSA... it was decided that disclosure of the design considerations would reveal the technique of DC, a powerful technique [...] would weaken the competitive advantage the U. S. enjoyed over other countries in the field of cryptography.

"Official" History

• Differential Cryptanalysis : Biham-Shamir [1991]

Fault Attacks

34

DC was studied in Eastern Germany in 1973!

Geheime Verschlußsache Mis -020-Nn.747 (73/BL 45 BSTU 000053

Durch die Festlegung von Z wird die kryptologische Qualität des Chiffrators beeinflußt. Es wurde davon ausgegangen, daß eine Funktion Z kryptologisch geeignet ist, wenn sie folgende Forderungen erfüllt:

(1)
$$|\{x = (x_{A_1}, x_{2_1}, \dots, x_6) \in \{0, A\}^6 | 2(x) = 0\}| = 2^5$$

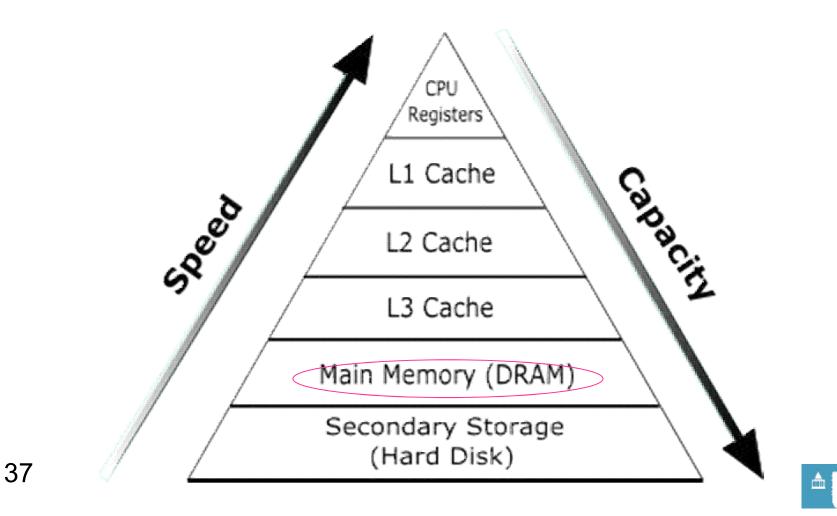
(2) $|\{x = (x_{A_1}, x_{2_1}, \dots, x_6) \in \{0, A\}^6 | 2(x) = 0, \sum_{x=4}^{6} x_x = x\}| \approx \binom{6}{x} \cdot \frac{1}{2}$
(3) $|\{x = (x_{A_1}, \dots, x_6\} \in \{0, A\}^6 | 2(x_{A_1}, x_{2_1}, \dots, x_6) = 2(x_{A_1}, \dots, x_6)\} = 2(x_{A_1}, \dots, x_6)\} = 2(x_{A_1}, \dots, x_6)\} = 2(x_{A_1}, \dots, x_6)$

Fault Attacks on PCs [this paper]

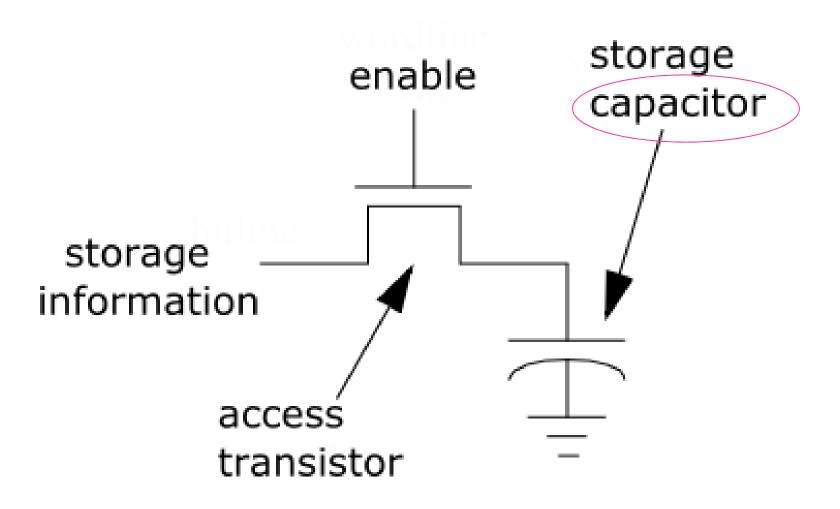
Rule Nb. 1

Never believe what hackers claim.

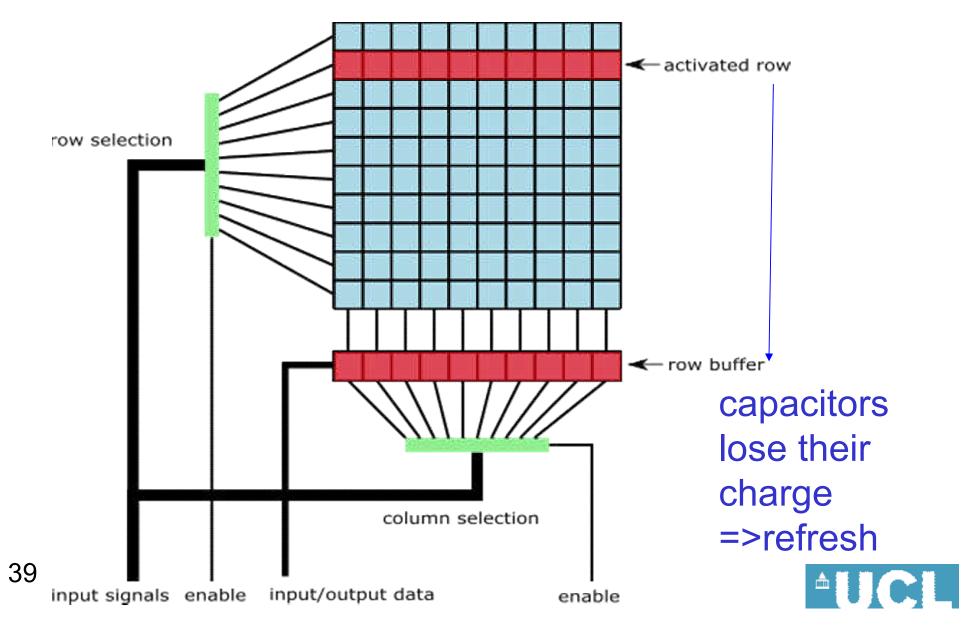
=> Most attacks described in current literature do NOT work as claimed or it is hard to make them work

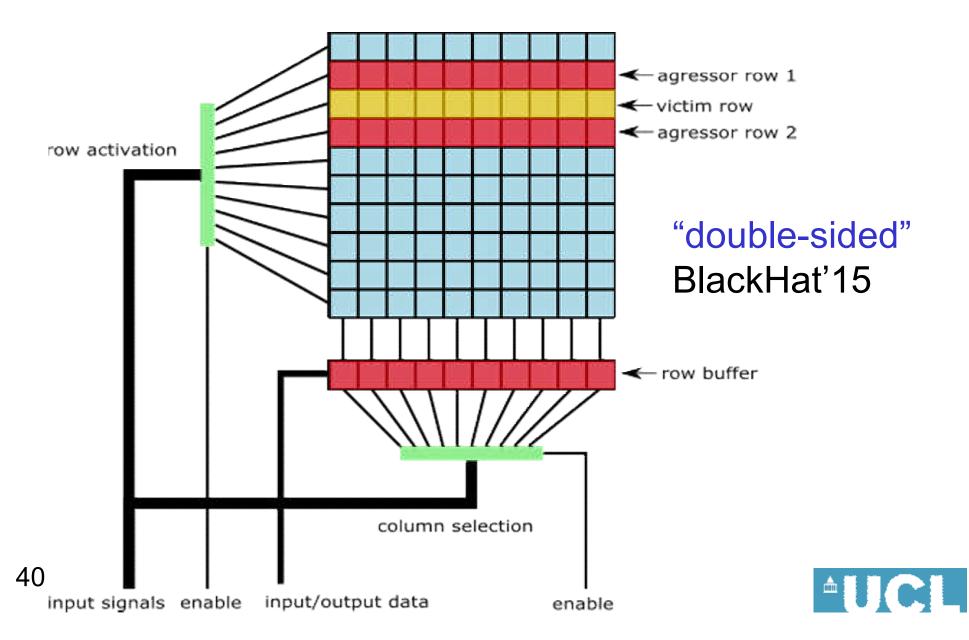

=> Many other require root access. However. if attacker is root => lots of things he can do....

Our work: practical attacks without root privileges, also work in VM, and some of the highest speeds EVER achieved.



Our Goal: Introduce Faults in RAM


RAM cell



Arrays of Capacitors – normal R operation

RowHammer Attack

Difficulties

- How to bypass the cache???
 =>otherwise the data is not read from RAM
- Avoid the row buffer of the target row
- =>otherwise the data is not read from RAM either!

SBDR – goal to achieve

• Same Bank Different Rows [Dullien Seaborn 2015]

⇒Considered a minimum requirement to launch a RowHammer attack...

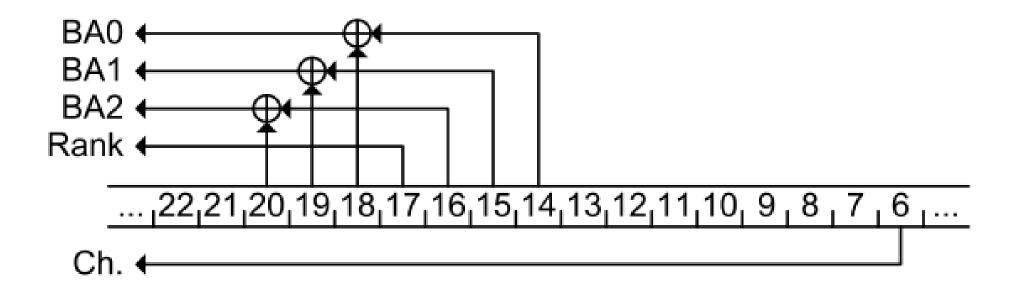
 \Rightarrow just this leads to quite poor attacks...

 \Rightarrow like 5 bit flips in 10 minutes

 \Rightarrow of course just ONE bit flipped could achieve sth spectacular

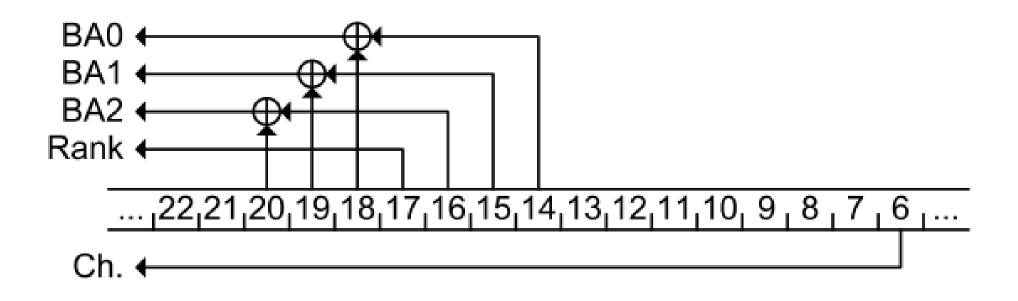
 \Rightarrow recover a valuable Bitcoin private key worth M\$...

Cache Avoidance / Data Eviction


 \Rightarrow Fill the cache with lots of data.

 $\Rightarrow CLFlush \text{ instruction, all attacks in our paper need/use it} \\ \Rightarrow In user space on Intel processors \\ \Rightarrow ARM in mobile phones are MORE secure!!!!$

Obfuscation!


S&P'13 => security by obscurity!

- documented by AMD,
- secrecy by Intel...
- cf. new processors, DDR4, etc.

Beware!

Attacker CAN reverse engineer ±EASILY: cf. our tcrh tool [and S+P'13 and Usenix 2007]

github.com/vp777/Rowhammer

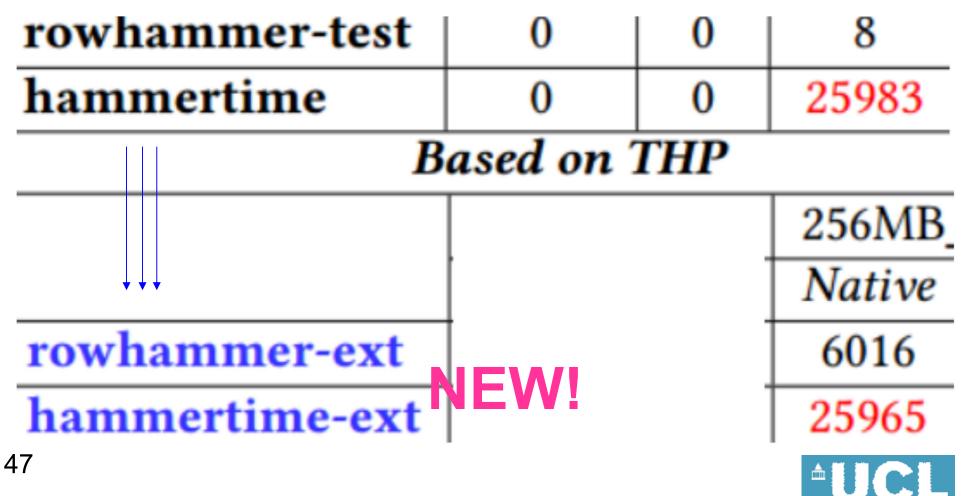
another trick we use:

\Rightarrow increase page size

 \Rightarrow the mapping is "more" transparent to the user...

 \Rightarrow the offset is the same as the physical offset

github.com/vp777/Rowhammer


- cf. our hprh tool
- =>pages can be up to 1G on Intel!
- => we use the THP feature or Linux 4K=>2M

THP => incredible boost

⇒We also provide patches to 2 third party rowhammer attack which add the THP ability!

Comparison of Attack Tools

	DRAM Mapping			Cache Eviction		
	pagemap	THP	TC	CLFLUSH	CES	
rowhammer-test[4]	 	+ 🖌	-	~	~	
rowhammerjs[8]	\approx	-	-	~		
hammertime[2]	~	+ 🗸	-	~	-	
hprh[13]*	-	~	-	~	-	
tcrh[13]*	-	-	~	~	-	

[4]=Dullien-Seaborn 2015[8]=Gruss-Maurice 2016-17[2]=Tatar, 2016

[13]=our two new software tools: <u>github.com/vp777/Rowhammer</u>

new tools we developed

our hprh tool = Huge Page RowHammer

our tcrh tool = Timing Channel RowHammer

github.com/vp777/Rowhammer

Results: #Bits Flipped / 10 minutes

Based on pagemap								
root 🛞	2MB_1	MIN	256MB_10MIN					
	Native	VM	Native	VM				
rowhammer-test	0	0	8	0				
rowhammer-js	0	0	1322	66				
hammertime	0	0	25983	1177				

	Based on THP						
		2MB_1MIN		256MB_10MIN			
		Native	VM	Native	VM		
MODIFIED!	rowhammer-ext	932	0	6016	5		
	hammertime-ext	1911	0	25965	46		
	hprh	2301	0	25003	63		
NEW!	=> github.com/vp777/Rowhammer						
	Based on the Timing Channel						
		2MB_1N	MIN	256MB_	MB_10MIN		
		Native	VM	Native	VM		
50	tcrh	62	0	832	169		