

Block Ciphers: Lessons from the Cold War

Nicolas T. Courtois
University College London, UK

Topics:

Part 1: Lessons from Cold War

Part 2: NonLinear Cryptanalysis

- Attacks with polynomial invariants
 - Product attack [P*Q*R*...] = very powerful

Topics:

Part 1: Lessons from Cold War: see

 Nicolas Courtois, Jörg Drobick and Klaus Schmeh: "Feistel ciphers in East Germany in the communist era," In Cryptologia, vol. 42, Iss. 6, 2018, pp. 427-444.

Part 2: NonLinear Cryptanalysis:

- Attacks with polynomial invariants
 - Product attack [P*Q*R*...] = very powerful
- References:
 - Courtois @Crypto 2004
 - (NEW) eprint/2018/1242
 - few more...

Dr. Nicolas T. Courtois

blog.bettercrypto.com

UNIVERSITY CIPHER CHAMPION

March 2013

Question 1:

Why 0% of symmetric encryption used in practice are provably secure?

Provably Secure Encryption!

Based on MQ Problem.

Dense MQ is VERY hard.

Best attack ≈ 2^{0.8765n}

- top of the top hard problem.
- for both standard and PQ crypto

mqchallenge.org FXL/Joux 2017/372

=> Allows to build a provably secure stream cipher based on MQ directly!

C. Berbain, H. Gilbert, and J. Patarin:

QUAD: A Practical Stream Cipher with Provable Security, Eurocrypt 2005

Question 2:

Why researchers have found so few attacks on block ciphers?

Question 2:

Why researchers have found so few attacks on block ciphers?

"mystified by complexity"

lack of working examples: how a NL attack actually looks like??

Cryptanalysis

=def=Making the impossible possible.

How? two very large polynomials are simply equal

LinkedIn

Russian Translation:

code breakers ==

взломщики кодов

History: Cold War Russia vs. USA

and "obtained" 7 other codes.

Cold War

Cold War: Soviet Union was breaking codes and employed at least 100 cryptologists...

[Source: Cryptologia, interviews by David Kahn with gen. Andreev=first head of FAPSI=Russian NSA]

Example: In 1967 GRU (Soviet Intelligence) was intercepting cryptograms from 115 countries, using 152 cryptosystems, and among these they broke 11 codes

Compromise of Old Crypto

USS Pueblo / North Korea

Jan 1968

US/NATO crypto broken

Russia broke the NATO KW-7 cipher machine: Walker spy ring, rotors+keys,

- paid more than 1M USD (source: NSA)
- "greatest exploit in KGB history"
- allowed Soviets to "read millions" of US messages [1989, Washington Post]

1970s

Modern block ciphers are born.

In which country??

Who knows...

Our Sources

MfS Abteilung 11 = **ZCO** = Zentrales Chiffrierorgan der DDR

Gehelmenderschlußsache

Our Sources

Boolean Functions Expertise: Imported

[3] Краткий конспект лекций для специалистов ЦШО МГЕ ГДР сов.секретно к-1 Инв. 2243

Kapitel I / Boolesche Funktionen

L

Algebraic Cryptanalysis – 1927

The real inventor of the

ANF = Algebraic Normal Form, see

en.wikipedia.org/wiki/Zhegalkin_polynomial

Russian mathematician and logician

Ива́н Ива́нович Жега́лкин [Moscow State University]

"best known for his formulation of Boolean algebra as the theory of the ring of integers mod 2"

$$B_{n,}^{+,*}$$

Cipher Class Alpha –1970s

Who invented Alpha?

[full document not avail.]

Введение

Класс АЛЬФА определён в /I/. Там же имеется ряд определений и обозначений, которые в настоящем документе не обясняются.

East German T-310

240 bits

"quasi-absolute security" [1973-1990]

has a physical RNG=>IV

long-term secret 90 bits only!

Contracting Feistel [1970s Eastern Germany!]

Differential Cryptanalysis (DC)

"Official" History

Differential Cryptanalysis:
 Biham-Shamir [1991]

IBM USA 1970s

Wikipedia DC entry says:

[...] IBM had discovered differential cryptanalysis on its own

[...] IBM have agreed with the NSA that the design criteria of DES should not be made public.

One form of DC was known in 1973!

Durch die Festlegung von Z wird die kryptologische Qualität des Chiffrators beeinflußt. Es wurde davon ausgegangen, daß eine Funktion Z kryptologisch geeignet ist, wenn sie folgende Forderungen erfüllt:

(1)
$$|\{x = (x_1, x_2, \dots, x_6) \in \{0, 1\}^6 | \exists (x) = 0\}| = 2^5$$

(2) $|\{x = (x_1, x_2, \dots, x_6) \in \{0, 1\}^6 | \exists (x) = 0, \sum_{i=1}^6 x_i = \tau\}| \approx {6 \choose \tau} \cdot \frac{1}{2}$
(2) $|\{x = (x_1, x_2, \dots, x_6) \in \{0, 1\}^6 | \exists (x) = 0, \sum_{i=1}^6 x_i = \tau\}| \approx {6 \choose \tau} \cdot \frac{1}{2}$

Open Problem

– Backdoor symmetric encryption?

How to Backdoor T-310 [1st method]

omit just 1 out of 40 conditions:

```
D and P are injective
                                    P(3) = 33, P(7) = 5, P(9) = 9, P(15) = 21, P(18) = 25, P(24) = 29
                                                                                              Let W = \{5, 9, 21, 25, 29, 33\}
                                                                                                                   \forall_{1>i>9}D(i) \notin W
  Let T = (\{0, 1, ..., 12\} \setminus W) \cap (\{P(1), P(2), ..., P(24)\} \cup \{D(4), D(5), ..., D(9)\} \cup \{\alpha\})
                                 Let U = (\{13, ..., 36\} \setminus W) \cap (\{P(26), P(27)\} \cup \{D(1), D(2), D(3)\})
                                                                                          |T \setminus \{P(25)\}| + |U \setminus \{P(25)\}| \le 12
A = \{D(1), D(2), D(3), D(4), D(5), D(6), D(7), D(8), D(9)\} \cup \{P(6), P(13), P(20), P(27)\}
                                                                                              A_1 = \{D(1), D(2)\} \cup \{P(27)\}
                                                                                              A_2 = \{D(3), D(4)\} \cup \{P(20)\}
                                                                                              A_3 = \{D(5), D(6)\} \cup \{P(13)\}
                                                                                                A_4 = \{D(7), D(8)\} \cup \{P(6)\}
                                                                           \forall (i, j) \in \{1, ..., 27\} \times \{1, ..., 9\} : P_i \neq D_j
                                                                                                    \exists j_1 \in \{1, ..., 7\} : D_{j_1} = 0
                                                                                       \{D(8), D(9)\} \subset \{4, 8, ..., 36\} \subset A
                                                                                               \forall (i, j) \in \overline{1,27} \times \overline{1,9} : P_i \neq D_j
                                                                                                               \exists j_1 \in \overline{1,7} : D_{\dot{A}} = 0
                                                                                             \{D_8, D_9\} \subset \{4, 8, ..., 36\} \subset A
                                                                                     \exists (j_2, j_3) \in (\{j \in \overline{1, 4} | D_j? \notin A_j\})^2 \land
                                         \exists (j_4, j_5) \in (\overline{1, 4} \setminus \{j_1, 2j_2 - 1, 2j_2\}) \times (\overline{5, 8} \setminus \{j_1, 2j_2 - 1, 2j_2\}) \land
                                                                                    \exists j_6 \in \overline{1,9} \setminus \{j_1, 2j_2 - 1, 2j_2, j_4, j_5\}:
                                                                                                 j_2 \neq j_3 \land \{4j_4, 4j_5\} \subset A_{j_2} \land
                                                                               A_{j_0} \cap (\overline{4j_1 - 3, 4j_1} \cup \overline{4j_6 - 3, 4j_6}) \neq \emptyset \land
                                             \{8j_2 - 5, 8j_2\} \subset A_{i_2} \land A_{j_1} \cap (4j_1 - 3, 4j_1 \cup 4j_3 - 3, 4j_6) \neq \emptyset;
                                                                                                  \{D(9)\}\setminus (\overline{33,36}\cup \{0\}) \neq \emptyset
                                                        \{D(8), D(9), P(1), P(2), \dots, P(5)\} \setminus (29,32 \cup \{0\}) \neq \emptyset
                                                        \{D(7), D(8), P(1), P(2), \dots, P(6)\} \setminus \{25, 32 \cup \{0\}\} \neq \emptyset
                                           \{D(7), D(9), P(1), P(2), \dots, P(6)\} \setminus (25, 28 \cup 33, 36 \cup \{0\}) \neq \emptyset
                                   \{D(6), D(7), D(8), D(9), P(1), P(2), \dots, P(12)\} \setminus (21, 36 \cup \{0\}) \neq \emptyset
                      \{D(5), D(7), D(8), D(9), P(1), P(2), \dots, P(13)\} \setminus (\overline{17, 20} \cup \overline{25, 36} \cup \{0\}) \neq \emptyset
                                              \{D(7), D(8), D(9), P(1), P(2), \dots, P(6)\} \setminus (25, 36 \cup \{0\}) \neq \emptyset
                       \{D(5), D(6), D(8), D(9), P(1), P(2), \dots, P(13)\} \setminus (\overline{17, 24} \cup \overline{29, 36} \cup \{0\}) \neq \emptyset
                       \{D(5), D(6), D(7), D(9), P(1), P(2), \dots, P(13)\} \setminus (\overline{17, 28} \cup \overline{33, 36} \cup \{0\}) \neq \emptyset
                                   \{D(5), D(6), D(7), D(8), P(1), P(2), \dots, P(13)\} \setminus (\overline{17,32} \cup \{0\}) \neq \emptyset
                          \{D(5), D(6), D(7), D(8), D(9), P(1), P(2), \dots, P(13)\} \setminus (\overline{17,36} \cup \{0\}) \neq \emptyset
                                      \{D(4), D(5), \dots, D(9), P(1), P(2), \dots, P(19)\} \setminus (\overline{13,36} \cup \{0\}) \neq \emptyset
                                        \{D(3), D(4), \dots, D(9), P(1), P(2), \dots, P(20)\} \setminus \{9, 36 \cup \{0\}\} \neq \emptyset
```

plus the "Matrix rank = 9 condition" M_9 defined in Section D.4 below.

ciphertext-only

bad long-term key

Linear Cryptanalysis (LC)

LC "Official" History

- Davies-Murphy attack [1982=classified, published in 1995] = early LC
- Shamir Paper [1985]..... early LC

 Linear Cryptanalysis: Gilbert and Matsui [1992-93]

Definition 3.1-1

LC at ZCO - 1976!

$$\Delta_{\alpha}^{q} = 2^{n-1} - \|g(x) + (\alpha, x)\| \quad \forall \alpha \in \overline{O_{1}2^{n}-1} .$$

$$\|g\|_{\widetilde{A}_{x}^{p}} \sum_{x} g(x) \qquad (\alpha, x) = \sum_{i=1}^{n} \alpha_{i} x_{i}$$

Geheime Verschlußsache MfS -020-Nr.: XI /493 76 BL 18

Ergebnisse:

8STU 0251

Sei t du Anrald des Ubereinstimmengen der Funktionswerk von 2.

Tabelle 3.1-2

α	Δ ² _α	£ .	α	Δ ² _~	t
000000	320	32	L00000	0	32
000001	2	34	L0000L	6	38
000010	- 4	28	L000L0	0	32
0000LL	6	38	LOOOLL	6.	38
000100	- 4	28	LOOLOO	- 4	28
000 L0 L	- 2	30	LOOLOL	2	34
000110	0	32	LOOLLO	4	36
000111	2	34	LOOLLL	2	34
	•	" ^	1 ~ 1 ~ 0 ~	^	2 1

Contracting Feistel [1970s Eastern Germany!]

LC Method to Backdoor T-310

703 P=7,14,33,23,18,36,5,2,9, 16,30,12,32,26,21,1,13,25, 20,8,24,15,22,29,10,28,6 D=0,4,24,12,16,32,28,36,20

bad long-term key

Shamir 1985

On the Security of DES

Adi Shamir
Applied Mathematics
The Weizmann Institute
Rehovot, Israel
(abstract)

 $x_2 \approx y_1 \oplus y_2 \oplus y_3 \oplus y_4$.

Common to all S-boxes !!!!

Super strong pty,

See our paper:

Courtois, Goubin, Castagnos eprint/2003/184

revisiting crypto history

Advanced Differential Cryptanalysis

Higher Order Differentials – 1976!

Definition 2.1-1

$$\frac{d^{2}(e_{1},...,e_{6})}{de_{i}} = 2(e_{1},...,e_{i-1},0,e_{i+1},...,e_{6}) + 2(e_{1},...,e_{i-1},L,e_{i+1},...,e_{6})$$

ist die einfache Ableitung der Booleschen Funktion Z.

Higher Order:

$$\frac{d^{k} 2(e_{1},...,e_{6})}{de_{i_{1}}...de_{i_{k}}} = \left(\frac{d}{de_{i_{1}}}\left(...\frac{d^{2}(e_{n_{1}...,e_{6}})}{de_{i_{k}}}\right)...\right)$$

$$mit \ 1 \leq i_{n_{1}}...,i_{k} \leq 6 \qquad k \in 1,6 ,$$

$$i_{j} \neq i_{\ell} \text{ fur } j \neq \ell,$$

Same as Today's Cube Attack

Geheime Verschlußsache MfS -020-Nr.: XI /493 /76 / BL 5

$$2^{(1)} = L + e_4 + e_3 e_4 + e_3 e_6 + e_4 e_5 + e_2 e_3 e_4 + e_2 e_3 e_5 + e_2 e_5 e_6 + e_2 e_3 e_4 e_5 + e_3 e_4 e_5 e_6$$

$$2^{(2)} = e_3 + e_5 + e_3 e_6 + e_4 e_6 + e_1 e_3 e_4 + e_1 e_3 e_5 + e_1 e_5 e_6 + e_3 e_4 e_6 + e_4 e_6 + e_1 e_3 e_4 e_5$$

$$2^{(2)} = e_3 + e_5 + e_3 e_6 + e_4 e_6 + e_1 e_3 e_4 + e_1 e_3 e_5 + e_1 e_5 e_6 + e_3 e_4 e_6 + e_6 e_6 + e_3 e_4 e_6 + e_4 e_6 e_6 + e_5 e_6 + e_5$$

$$\frac{2^{(134)}}{=} L + e_2 + e_2 e_5 + e_5 e_6$$

$$\frac{2^{(135)}}{=} e_2 + e_2 e_4 + e_4 e_6$$

$$\frac{2^{(136)}}{=} L + e_4 e_5$$

$$2^{(1246)} = 0$$

$$2^{(1256)} = L$$

$$2^{(1345)} = e_2 + e_6$$

Part 2

Generalized Linear Cryptanalysis (GLC)

Scope

We study how an encryption function φ of a block cipher acts on polynomials.

Stop, this is extremely complicated???

Main Problem:

Two polynomials $P \Rightarrow Q$.

is P=Q possible??

"Invariant Theory" [Hilbert]: set of all invariants for any block cipher forms a [graded] finitely generated [polynomial] ring. A+B; A*B

Generalised Linear Cryptanalysis = GLC =

[Harpes, Kramer and Massey, Eurocrypt'95]

Connecting Non-Linear Approxs.

Black-Box Approach [Popular]

Non-linear functions.

GLC and Feistel Ciphers?

[Knudsen and Robshaw, EuroCrypt'96

"one-round approximations that are non-linear [...] cannot be joined together"...

At Crypto 2004 Courtois shows that GLC is in fact possible for Feistel schemes!

BLC better than LC for DES

```
L_0[3, 8, 14, 25] \oplus L_0[3]R_0[16, 17, 20] \oplus R_0[17] \oplus
(*) L_{11}[3, 8, 14, 25] \oplus L_{11}[3]R_{11}[16, 17, 20] \oplus R_{11}[17] =
K[sth] + K[sth']L_0[3] + K[sth'']L_{11}[3]
```

Better than the best existing linear attack of Matsui

for 3, 7, 11, 15, ... rounds.

Ex: LC 11 rounds: $\frac{1}{2} \pm 1.91 \cdot 2^{-16}$

BLC 11 rounds: $\frac{1}{2} \pm 1.2 \cdot 2^{-15}$

Phase Transition

=def=Making the impossible possible.

How?
Use polynomials of higher degree

Better Is Enemy of Good!

DES = Courtois @ Crypto 2004:

$$\frac{1}{2} \pm 1.91 \cdot 2^{-16}$$
 deg 1 $\frac{1}{2} \pm 1.2 \cdot 2^{-15}$ deg 2 proba=1.0 deg 10

New White Box Approach

[Courtois 2018]

F(inputs) = F(outputs) with probability 1.

Formal equality of 2 polynomials.

shocking discovery

Eastern Bloc Ciphers are WEAK w.r.t. our Attack

- 1. Closed Loops
- 2. Key Entropy per Round

Military Enigma [1930s]

stecker= plugboard

[after 1929]

Enigma Stecker

Huge challenge for code breakers

*common point in all good Enigma attacks: eliminate the stecker, "chaining techniques"...

Double Encryption Method – Big Mistake

15 Sept 1938 - 1 May 1940

GOST 28148-89

Developed in 1970s...

- First "Top Secret" / Type 1 algorithm.
- Declassified in 1994.

Closed Loops

In GOST block cipher:

highly vulnerable!

Closed Loops - DES

@eprint/ 2018/1242

Big Winner

"product attack"

a product of Boolean polynomials.

Claimed extremely <u>powerful</u>. Why?

Key Remark:

To insure that

$$P*R \Rightarrow P*R$$

we only need to make sure that P=>P but ONLY for a subspace where R(inp)=1 and R(out)=1

Impossible?

"Only those who attempt the absurd will achieve the impossible."

-- M. C. Escher

$$D \to C \to B \to A \xrightarrow{\bullet} D$$

Block Cipher Invariants

Cycles

Thm 5.5.

In eprint/2018/1242 page 18.

is invariant if and only if this polynomial vanishes:

$$FE = BCDFGH \cdot ((Y + E)W(.) + AY(.))$$

Can a polynomial with 16 variables with 2 very complex Boolean functions just disappear?

Hard Becomes Easy

Phase transition: eprint/2018/1242.

- When # degree grows, attacks become a LOT easier.
- Degree 8: extremely strong:

15% success rate over the choice of a random Boolean function and with #=ABCDEFGH.

DES

*work for a fraction of keys

Degree 5 Attack on DES

```
Theorem: Let \mathscr{P}= (1+L06+L07)*L12 * R13*R24*R28
```

IF

(1+c+d)*W2==0 and (1+c+d)*X2==0

e*W3==0 and f*Z3==0

ae*X7==0 and ae*Z7==0

THEN

fis an invariant for 2 rounds of DES.

East vs. West Block Ciphers

								VOLUME SO ESSECT JANUARY 2006	
Cipher	Year	Country	Block Size	Key size (underlined number is used in the following columns)	Round number (in key schedule)	Rounds / bit encrypted	roportion of key used per round		AZGOL BNZ GK LOG HA
SKS V/1	1973	Eastern Germany	27	208	104	119	1 %		
T-310	1976	Eastern Germany	36	240	120	165	0.8 %	• Inder & Francis	2535/084-294
DES	1974	USA	64	56	16	0.25	75 %	2300 ²	10,400
GOST (aka MAGMA)	1989	Russia	64	256	32	0.5	12.5 %	800 ³	1600
TEA	1994	UK	64	128	64	1	50 %	2100 ²	2100
AES	1996	Belgium	128	128/192/256	10	0.08	100 %	2400 ¹	30,000
PRESENT	2007	Germany/ France	64	80/ <u>128</u>	31	2.1	100 %	11002	533
Simon/ Speck	2013	USA	64	64/72/96/ <u>128</u> /144/ 192/256	27	0.42	100 %	1250 ¹	2963