Finite Fields and AES

8
Nicolas T. Courtois
(D). University College of London

Rings

Rings

"When two operations work together nicely" like + and *.
($R,+,{ }^{*}, 0,1$) is a Ring if:

- $0 \neq 1$ (avoids a "trivial" ring \{0\},+,*)
- $\mathrm{R},+$ is an Abelian group
- $\mathrm{R} \backslash\{0\}$, * is a monoid with identity element 1.
- * distributes over +:

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& (b+c) a=b a+c a
\end{aligned}
$$

Fields

Fields

- $\mathrm{R} \backslash\{0\}$, * is a monoid with identity element 1.

BECOMES

- $\mathrm{R} \backslash\{0\}$, * is a group with identity element 1.

Added requirement: each element $\mathrm{a} \neq 0$ has an inverse.

Corollary: When p is prime, Z_{p} is a field.

Example 2.B.

$(\{1,2,3\},+\bmod 4, * \bmod 4)$ is a ring.

It is NOT a field. Why?

Example 2.B.

$(\{1,2,3\},+\bmod 4, * \bmod 4)$ is a ring.

It is NOT a field. Why?
Proof: 2 has no inverse.

Example 3

Let $\mathrm{K}[\mathrm{X}]$ be the set of all polynomials in one variable $X . K[X]$ is a ring.

Let $P(X)$ be a polynomial of degree n.
Exactly as we reduce integers modulo p, we can reduce all polynomials modulo $P(X)$.
Fact: Residue classes modulo $P(X)$ also form a ring.
We call it $K[X] / P(X)$.
Representative elements: all polynomials in $K[X]$ of degree up to $\mathrm{n}-1$.

Example 3

Example: $\mathrm{K}=\mathrm{Z}_{3}$. Let $\mathrm{P}(\mathrm{X})=\mathrm{X}^{3}+1$.

$$
(X+1)^{*}\left(2 X^{2}+X\right)=?
$$

Question:

At which moment the residue classes modulo $\mathrm{P}(\mathrm{X})$ give a field?
For what polynomials, $Z_{n}[X] / P(X)$ is a field ?
Theorem: If and only $K=Z_{p}$, p prime and $P(X)$ is an irreducible polynomial.
Irreducible == has no proper divisor of lower degree.
Proof: DIY, the same as before. Irreducible is the equivalent of prime numbers.
Note: p is called the characteristic of this field.
$x+x+\ldots p$ times $=0$.

Finite Fields

Theorem:

ALL FINITE FIELDS are of the form $Z_{p}[X] / P(X)$, with p prime.

Corollary: the number of elements of a finite field is always $q=p^{n}$:
They are represented by all polynomials

$$
a_{0}+a_{1} X^{1}+\ldots+a_{n-1} X^{n-1} .
$$

corresponds to all possible n -tuples

$$
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) .
$$

Moreover

ALL FINITE FIELDS are of the form $Z_{p}[X] / P(X)$, with p prime. There isn't any more.

There is only "one" field that has $q=p$ n elements: means that all finite fields that have q elements are isomorphic (and therefore have exactly the same properties).

Theorem:

The multiplicative group of a finite field F is cyclic.

Means that there is a single element g , called primitive element, such that every element of the field $\mathrm{F} \backslash\{0\}$ is a power of g.

We call $P(X)$ primitive polynomial (must be irreducible) such that X is a primitive element in $Z_{p}[X] / P(X) \backslash\{0\}$.
In other words, every element of $Z_{p}[X]$
is equal to a power of X modulo $P(X)$.

Corollary:

$$
\text { In } Z_{p} \text { we had } a^{p}=a[\text { [Fermat's Little Thm.] }
$$

In any finite field F that has q elements

$$
a^{q}=a .
$$

This is called the equation of a finite field.

