

Cold War Crypto, Correlation Attacks, DC, LC, T-310, Weak Keys and Backdoors

Nicolas T. Courtois
University College London, UK

bugs or backdoors?

False Backdoors = def =

strong properties of ciphers/systems/RNGs which are maybe dangerous...

Any Backdoors?

Bad Randoms – 1930s – Enigma Message Keys

(should be 3 random letters)

Operators always found a way to «degrade » their security

Crypto History

CRYPTOLOGIA

EDITOR-IN-CHIEF

Craig Bauer York, PA, USA cryptoauthor@gmail.com

REVIEW EDITOR

Chris Christensen
Department of Mathematics
Northern Kentucky University
Highland Heights, KY, USA
christensen@nku.edu

FOUNDING EDITORS

Cipher A. Deavours

Department of Mathematics

Kean University of New Jersey

Union, NJ, USA

cdeavours@kean.edu

Brian J. Winkel
Editor Emeritus
Dept. of Mathematical Sciences
United States Military Academy
West Point, NY, USA
brianwinkel@byc.rr.com

Kent D. Boldan Queens College, The City University of New York, NY, USA boklan@boole.cs.qc.cuny.edu

Stephen Budiansky Leesburg, VA, USA sb@budiansky.com

Augusto Buonafalce San Terenzo, Italy augusto@cdh.it

Colin Burke Columbia, MD, USA burke@umbc.edu

Jan Bury Cardinal Stefan Wyszynski University, Warsaw, Poland j.bury@uksw.edu.pl

Nicolas T. Courtois Computer Science, University College London, David Kahn New York, NY, USA DavidKahn1@aol.com

EDITORIAL BOARD

Whitfield Diffie Center for International Security and Cooperation, Stanford University, Stanford, CA, USA diffie@stanford.edu

Ralph Erskine Parliament Buildings, Stormont, Belfast, Northern Ireland, UK erskine, ralph@yahoo.co.uk

Wes Freeman Mt. View, CA, USA wesf@worldnet.att.net

David W. Gaddy Tappahannock, VA, USA dwgaddy@verizon.net

James J. Gillogly Los Angeles, CA, USA scryer@gmail.com

Lee A. Gladwin

Bob Hanyok 6500 Walker Branch Dr. Laurel, MD, USA rjhanyok⊕verizon.net

David Hatch Center for Cryptologic History, National Security Agency, Fort Meade, MD, USA dahatch@nsa.gov

Joshua Brandon Holden
Department of Mathematics,
Rose-Hulman Institute
of Technology,
Terre Haute, IN, USA
holden@rose-hulman.edu

David Joyner Mathematics Department, United States Naval Academy Annapolis, MD, USA wdj@usna.edu

David Kahn Great Neck, NY, USA Greg Mellen Editor Emeritus In Memoriam

Louis Kruh Editor Emeritus In Memoriam

David Naccache Ecole normale supérieure, Département d'informatique, Paris, France david.naccache@ens.fr

Raphael C.-W. Phan Multimedia University, Malaysia raphaelphan.crypt@gmail.com

Klaus Schmeh Gelsenkirchen, Germany klaus@schmeh.org

Alan T. Sherman
Department of Computer
Science & Electrical Engineering,
University of Maryland,
Baltimore County
Baltimore, MD, USA
sherman@umbc.edu

William Stallings USA, ws@shore.net or http://williamstallings.com/

Frode Weierud

Nicolas T. Courtois

HistoCrypt / Euro-HCC

European Historical Ciphers Colloquium²⁰¹⁷

The European colloquium for the research on historical ciphers and encryption devices.

18-19 May 2017, Slovakia

18-19 May Program

Day 1 - 18th May 2017	Day 2 19th May 2017		
Opening Conference and Welcome K. Nemoga 09:00 - 09:15	istory of public key cryptography and RSA – Session Chair: B. Esslinger J. Quisquater 9:00-10:00		
The 'Gustave Bertrand' files – Session Chair; N. Courtois D. Turing 09:15 9:45			
Session 1 – Session Chair: G.F. Strasser	Session 3 – Session Chair: K. Schmeh		
Slot 1: 09:45 - 10:15: G. Lasry - The Hagelin Cryptosystems - Historical and Modern Cryptanalysis	Slot 9: 10:00 - 10:30: P. Bonavoglia - How I decrypted Pietro Giannone's last poem		
Coffee Break 10:15 - 10:45	Coffee Break 10:30 - 11:00		
Slot 2: 10:45 - 11:15: N. Kopal - A General Solution for the M-94	Slot 10: 11:00 - 11:30: G.F. Strasser - Wolfenbüttel, a Minor German Duchy but		
Slot 3: 11:15 - 11:45: J. Kollár - Determining the text reading direction of an unknown text	a Major Center of Cryptology in the Early Modern Period		
Slot 4: 11:45 - 12:15: B. Esslinger - Automated Cryptanalysis of Classical Ciphers	Slot 11: 11:30 - 12:00; S. Porubsky - STP cipher of the Czechoslovak		
17 TI	Ministry of Defence in London during WWII		
Lunch 12:15 - 13:30	Slot 12: 12:00 - 12:30: M. Grajek - Interrogation at Eisenberg Castle - How two Polish officers saved the Ultra secret just before Overlord		
Session 2 – Session Chair: D. Turing	Closing Remarks		
Slot 5: 13:30 - 14:00: K. Schmeh - German Spy Ciphers of World War II	12:30 - 12:45		
Slot 6: 14:00 - 14:30; C. Taaks - The Early Times of the Enigma - Political, Economic and Military			
Coffee Break 14:30 - 15:00	Lunch and/or departure		
Slot 7: 15:00 - 15:30: P. Guillot - The priceless gift - The Polish cryptanalysis of Enigma	12:45 - 14:00		
Slot 8: 15:30 - 16:00: M-J. Durand-Richard - Cryptology at Bletchley Park (1939-1945)			

LinkedIn

Post-WW2 Crypto History

1960s

NATO Cipher competition

- UK
- US
- France
- Germany

Requirements:

- "tapeless and rotorless"
 => semi-conductor electronic,
- high EM/SCA security!

French Submission

Actes du septième Colloque sur l'Histoire de l'Informatique et des Transmissions

95

Histoire de la machine Myosotis [2004]

Xavier Ameil, Jean-Pierre Vasseur et Gilles Ruggiu

Association des Réservistes du Chiffre et de la Sécurité des Informations

large period, non-linearity / removing the correlations (p.108)

"...certainement la meilleure machine cryptographique de son époque..."

Compromise of Old Crypto

USS Pueblo / North Korea

Jan 1968

US/NATO crypto broken

Russia broke the NATO KW-7 cipher machine: Walker spy ring, rotors+keys,

- paid more than 1M USD (source: NSA)
- "greatest exploit in KGB history"
- allowed Soviets to "read millions" of US messages [1989, Washington Post]

1970s

Modern block ciphers are born.

In which country??

1970s

Modern block ciphers are born.

In which country??

Who knows...

Our Sources

Gehelmend aufheben laufgehoben
ZCOlauffer: 402/80 Referat 11 Ausf. 123 Blatt 1012.90 kg BStU 000001 Kryptologi Analyse

Referat 11

MfS Abteilung 11 = **ZCO** = Zentrales Chiffrierorgan der DDR

,

MfS = Ministerium für Staatssicherheit

Ministry of State Security of GDR = Stasi

BStU

Our Sources

How do you say "ZCO" in Russian?

How do you say "ZCO" in Russian?

[3] Краткий конспект лекций для специалистов
ЦШО МГЕ ГДР
сов. секретно к-1 Инв. 2243

Kapitel I / Boole sche Funktionen

East German SKS V/1 and T-310

240 bits

"quasi-absolute security" [1973-1990]

has a physical RNG=>IV

long-term secret 90 bits only!

Block Cipher Class Alpha = c.1970

obscure origins...

GVS-ZCO-198/77

Введение

[full document not avail.]

Класс АЛЬФА определён в /I/. Там же имеется ряд определений и обозначений, которые в настоящем документе не обясняются.

Differential Cryptanalysis = DC

Wikipedia DC entry says:

In 1994 [...] IBM [...] Coppersmith published a paper stating that DC was known to IBM as early as 1974.

[...] IBM had discovered differential cryptanalysis on its own [...] NSA was apparently well aware of the technique.

Coppersmith explains: "After discussions with NSA, it was decided that disclosure of the design considerations would reveal the technique of DC, a powerful technique that could be used against many ciphers. This in turn would weaken the competitive advantage the United States enjoyed over other countries in the field of cryptography.

"Official" History

- Davies-Murphy attack [1982=classified, published in 1995] = early LC
- Shamir Paper [1985]..... early LC
- Differential Cryptanalysis:
 Biham-Shamir [1991]
- Linear Cryptanalysis: Gilbert and Matsui [1992-93]

One form of DC was known in 1973!

Durch die Festlegung von Z wird die kryptologische Qualität des Chiffrators beeinflußt. Es wurde davon ausgegangen, daß eine Funktion Z kryptologisch geeignet ist, wenn sie folgende Forderungen erfüllt:

(1)
$$|\{x = (x_1, x_2, \dots, x_6) \in \{0, 1\}^6 | \exists (x) = 0\}\}| = 2^5$$

(2) $|\{x = (x_1, x_2, \dots, x_6) \in \{0, 1\}^6 | \exists (x) = 0, \sum_{i=1}^6 x_i = \tau\}| \approx {6 \choose \tau} \cdot \frac{1}{2}$
(2) $|\{x = (x_1, x_2, \dots, x_6) \in \{0, 1\}^6 | \exists (x) = 0, \sum_{i=1}^6 x_i = \tau\}| \approx {6 \choose \tau} \cdot \frac{1}{2}$

Definition 3.1-1

LC at ZCO - 1976!

$$\Delta_{\alpha}^{q} = 2^{n-1} - \|g(x) + (\alpha, x)\| \quad \forall \alpha \in \overline{O_{1}2^{n}-1} .$$

$$\|g\|_{\widetilde{A}_{1}} \underset{x}{\mathcal{E}} g(x) \qquad (\alpha, x) = \underset{i=1}{\overset{n}{\sum}} \alpha_{i}x_{i}$$

Geheime Verschlußsache MfS -020-Nr.: XI /433 76/ BL 18

Ergebnisse:

8STU 0251

Sei t de Anrald des Ubereinstimmungen der Funktionswerk von 2.

Tabelle 3.1-2

α	Δ_{∞}^{2}	ŧ.	α	Δ ² ~	. t
000000	320	32	L00000	0	32
000001	2	34	L0000L	6	38
000010	- 4	28	L000L0	0	32
0000LL	6	38	LOOOLL	6.	38
000100	- 4	28	LOOLOO	- 4	28
000 L0 L	- 2	30	LOOLOL	2.	34
000110	ō	32	LOOLLO	$\widetilde{4}$	36
, 000777	2	34	LOOLLL	2	34
OULLL	~	" ^	10100	~	21

Discrete Differentials and HO DC – 1976!

Definition 2.1-1

$$\frac{d^{2}(e_{1},...,e_{6})}{de_{i}} = 2(e_{1},...,e_{i-1},0,e_{i+1},...,e_{6}) + 2(e_{1},...,e_{i-1},L,e_{i+1},...,e_{6})$$

ist die einfache Ableitung der Booleschen Funktion Z.

Higher Order:

$$\frac{d^{k} 2(e_{1}, \dots, e_{G})}{de_{i_{1}} \dots de_{i_{k}}} = \left(\frac{d}{de_{i_{1}}} \left(\dots \frac{d^{2}(e_{n_{1}, \dots, e_{G}})}{de_{i_{k}}} \right) \dots \right)$$

$$mit \quad 1 \leq i_{n_{1}}, \dots, i_{k} \leq 6 \qquad k \in 1, 6,$$

$$i_{j} \neq i_{\ell} \text{ fur } j \neq \ell,$$

Computation of Differentials for All Orders

Geheime Verschlußsache MfS -020-Nr.: XI /493 /76 / BL 5

$$2^{(1)} = L + e_4 + e_3 e_4 + e_3 e_6 + e_4 e_5 + e_2 e_3 e_4 + e_2 e_3 e_5 + e_2 e_5 e_6 + e_2 e_3 e_4 e_5 + e_3 e_4 e_5 e_6$$

$$2^{(2)} = e_3 + e_5 + e_3 e_6 + e_4 e_6 + e_1 e_3 e_4 + e_1 e_3 e_5 + e_1 e_5 e_6 + e_3 e_4 e_6 + e_4 e_6 + e_1 e_3 e_4 e_5$$

$$2^{(2)} = e_3 + e_5 + e_3 e_6 + e_4 e_6 + e_1 e_3 e_4 + e_1 e_3 e_5 + e_1 e_5 e_6 + e_3 e_4 e_6 + e_4 e_6 + e_4 e_6 + e_4 e_6 + e_4 e_5 e_6 + e_3 e_4 e_6 + e_4 e_6 + e_4 e_6 + e_4 e_6 + e_4 e_5 e_6 + e_3 e_4 e_6 + e_4 e_$$

$$\frac{2^{(134)}}{=} L + e_2 + e_2 e_5 + e_5 e_6$$

$$\frac{2^{(135)}}{=} e_2 + e_2 e_4 + e_4 e_6$$

$$\frac{2^{(136)}}{=} L + e_4 e_5$$

$$2^{(1246)} = 0$$

$$2^{(1256)} = L$$

$$2^{(1345)} = e_2 + e_6$$

1970s, not 1990s...

- Differential Cryptanalysis
 Biham-Shamir 1991
- Linear Cryptanalysis:
 Gilbert and Matsui 1992-93

Contracting Feistel [1970s Eastern Germany!]

How to Backdoor T-310 [to appear in 2017]

omit just 1 out of 40 conditions:

```
D and P are injective
                                    P(3) = 33, P(7) = 5, P(9) = 9, P(15) = 21, P(18) = 25, P(24) = 29
                                                                                              Let W = \{5, 9, 21, 25, 29, 33\}
                                                                                                                   \forall_{1>i>9}D(i) \notin W
                                                                                                                                  \alpha \notin W
  Let T = (\{0, 1, ..., 12\} \setminus W) \cap (\{P(1), P(2), ..., P(24)\} \cup \{D(4), D(5), ..., D(9)\} \cup \{\alpha\})
                                 Let U = (\{13, ..., 36\} \setminus W) \cap (\{P(26), P(27)\} \cup \{D(1), D(2), D(3)\})
                                                                                         |T \setminus \{P(25)\}| + |U \setminus \{P(25)\}| \le 12
A = \{D(1), D(2), D(3), D(4), D(5), D(6), D(7), D(8), D(9)\} \cup \{P(6), P(13), P(20), P(27)\}
                                                                                              A_1 = \{D(1), D(2)\} \cup \{P(27)\}
                                                                                              A_2 = \{D(3), D(4)\} \cup \{P(20)\}
                                                                                              A_3 = \{D(5), D(6)\} \cup \{P(13)\}
                                                                                               A_4 = \{D(7), D(8)\} \cup \{P(6)\}
                                                                          \forall (i, j) \in \{1, ..., 27\} \times \{1, ..., 9\} : P_i \neq D_j
                                                                                                    \exists j_1 \in \{1, ..., 7\} : D_{\dot{n}} = 0
                                                                                       \{D(8), D(9)\} \subset \{4, 8, ..., 36\} \subset A
                                                                                               \forall (i, j) \in \overline{1,27} \times \overline{1,9} : P_i \neq D_j
                                                                                                              \exists j_1 \in \overline{1,7} : D_{\dot{A}} = 0
                                                                                             \{D_8, D_9\} \subset \{4, 8, ..., 36\} \subset A
                                                                                    \exists (j_2, j_3) \in (\{j \in \overline{1, 4} | D_j? \notin A_j\})^2 \land
                                        \exists (j_4, j_5) \in (\overline{1, 4} \setminus \{j_1, 2j_2 - 1, 2j_2\}) \times (\overline{5, 8} \setminus \{j_1, 2j_2 - 1, 2j_2\}) \land
                                                                                    \exists j_6 \in \overline{1,9} \setminus \{j_1, 2j_2 - 1, 2j_2, j_4, j_5\}:
                                                                                                j_2 \neq j_3 \land \{4j_4, 4j_5\} \subset A_{j_2} \land
                                                                               A_{j_1} \cap (\overline{4j_1 - 3, 4j_1} \cup \overline{4j_6 - 3, 4j_6}) \neq \emptyset \land
                                             \{8j_2 - 5, 8j_2\} \subset A_{i_2} \land A_{j_1} \cap (4j_1 - 3, 4j_1 \cup 4j_2 - 3, 4j_6) \neq \emptyset;
                                                                                                  \{D(9)\}\setminus (33,36\cup\{0\})\neq\emptyset
                                                       \{D(8), D(9), P(1), P(2), \dots, P(5)\} \setminus (29, 32 \cup \{0\}) \neq \emptyset
                                                        \{D(7), D(8), P(1), P(2), \dots, P(6)\} \setminus (25,32 \cup \{0\}) \neq \emptyset
                                           \{D(7), D(9), P(1), P(2), \dots, P(6)\} \setminus (25, 28 \cup 33, 36 \cup \{0\}) \neq \emptyset
                                   \{D(6), D(7), D(8), D(9), P(1), P(2), \dots, P(12)\} \setminus (21, 36 \cup \{0\}) \neq \emptyset
                       \{D(5), D(7), D(8), D(9), P(1), P(2), \dots, P(13)\}\setminus (\overline{17, 20}\cup \overline{25, 36}\cup \{0\}) \neq \emptyset
                                              \{D(7), D(8), D(9), P(1), P(2), \dots, P(6)\} \setminus (25, 36 \cup \{0\}) \neq \emptyset
                       \{D(5), D(6), D(8), D(9), P(1), P(2), \dots, P(13)\} \setminus (\overline{17, 24} \cup \overline{29, 36} \cup \{0\}) \neq \emptyset
                       \{D(5), D(6), D(7), D(9), P(1), P(2), \dots, P(13)\} \setminus (\overline{17, 28} \cup \overline{33, 36} \cup \{0\}) \neq \emptyset
                                   \{D(5), D(6), D(7), D(8), P(1), P(2), \dots, P(13)\} \setminus (\overline{17,32} \cup \{0\}) \neq \emptyset
                         \{D(5), D(6), D(7), D(8), D(9), P(1), P(2), \dots, P(13)\} \setminus (\overline{17,36} \cup \{0\}) \neq \emptyset
                                      \{D(4), D(5), \dots, D(9), P(1), P(2), \dots, P(19)\} \setminus (\overline{13,36} \cup \{0\}) \neq \emptyset
```

 $\{D(3), D(4), ..., D(9), P(1), P(2), ..., P(20)\} \setminus (9,36 \cup \{0\}) \neq \emptyset$ plus the "Matrix rank = 9 condition" M_0 defined in Section D.4 below. ciphertext-only

bad long-term key

bugs or backdoors?

False Backdoors = longer def = strong properties of ciphers/systems/RNGs which exist for NO apparent reason and which are clearly counter-productive or harmful.

- in some cases a really good attack was never found!
- or maybe we just discovered ½ of what we need to uncover?

Mystery Paper - Shamir 1985

On the Security of DES

Adi Shamir
Applied Mathematics
The Weizmann Institute
Rehovot, Israel
(abstract)

The purpose of this note is to describe some anomalies found in the structure of the S-boxes in the Data Encryption Standard. These anomalies are potentially dangerous, but so far they have not led to any successful cryptanalytic attack.

Mystery thing.
Related to LC published 8 years later.

** Shamir 1985

Shamir 1985

On the Security of DES

Adi Shamir
Applied Mathematics
The Weizmann Institute
Rehovot, Israel
(abstract)

 $x_2 \approx y_1 \oplus y_2 \oplus y_3 \oplus y_4$.

Common to all S-boxes !!!!

Mystery never explained, super strong pty,

We found more such properties [Courtois, Goubin, Castagnos 2003/184]

Another Method to Backdoor T-310

703 P=7,14,33,23,18,36,5,2,9, 16,30,12,32,26,21,1,13,25, 20,8,24,15,22,29,10,28,6 D=0,4,24,12,16,32,28,36,20

bad long-term key

Another Method to Backdoor T-310

703 P=7,14,33,23,18,36,5,2,9, 16,30,12,32,26,21,1,13,25, 20,8,24,15,22,29,10,28,6 D=0,4,24,12,16,32,28,36,20

Backdoor NOT KT1 compliant ⊗

bad long-term key

New Backdoors [to appear in 2017]

Level 1: Non-bijective φ – ALL broken! See:

Nicolas T. Courtois, Maria-Bristena
 Oprisanu: "Ciphertext-Only Attacks and Weak Long-Term Keys in T-310"

and our long extended master paper:

2. Courtois et al, "Cryptographic Security Analysis of T-310", eprint.iacr.org/2017/440.

New Backdoors [to appear in 2017]

Level 2: Bijective φ – secure???

New attack to be published in 2017.

New Backdoors [to appear in 2017]

Level 2: Bijective φ and KT1 compliant – secure???

- Fact: some KT1 keys have 10 Linear approximations true with P=1. Cf. 2017/440.
- Not exploitable due to super-paranoid lowrate cipher mode.
- =>A percentage of keys is also broken, another NEW attack to be published soon.

Open Problems

– Backdoor symmetric encryption?

GOST Cipher

GOST 28148-89

- Developed in the 1970s, or the 1980s,
 - First "Top Secret" / Type 1/Type A algorithm.
 - Downgraded to "Secret" in 1990.
- Declassified in 1994.

0x80700700,0x80700700 [Courtois-Misztal 2011]

0x80700700,0x80700700

Type 3+3: S836 + S836

