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Student Blockchain 
Research Competition

=> Please submit your thesis or student paper. 
Best work will be presented at a blockchain conference. Cash prizes. 

Prize Jury:              Sponsors:
• Prof. Jan Bergstra,  University of Amsterdam

• Prof. Alex Biryukov, University of Luxembourg

• Chair: Dr. Nicolas T. Courtois, UCL

• Ass. Prof. Stefan Dziembowski, Uni of Warsaw

• Prof. Jean-Paul Delahaye, Lille Uni. France

• Dr. Aggelos Kiayias, uni of Edinburgh

• Prof. David Naccache, ENS and Ingenico Labs, France

• Dr. Paolo Tasca, Deutschebank/UCL

• Dr. Vassilis Zikas, Rensselaer Polytechnic Institute, US

Deadline: 30 Sept. 2016.
Submissions: easychair.org/conferences/?conf=studblocseccomp16
Info: blog.bettercrypto.com/?p=2711
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Encryption

ciphertext

plaintext

-self-reciprocicity = involution pty
-no letter encrypted to itself
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Claim

from FIRST cipher machines in 1920s to 
todays’ block ciphers, cryptanalysis has 
NOT changed so much (!!).
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Marian Rejewski
December 1932: 

reverse engineering of Enigma rotors

– “the greatest breakthrough in cryptanalysis 
in a thousand years” [David Kahn] 

– cf. John Lawrence, "A Study of Rejewski's Equations", Cryptologia, 29 (3), July 2005, 
pp. 233–247. + other papers by the same author
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Rotors

Difficult 
to obtain 
for the 
enemy…

26 relative settings



Code Breakers

Nicolas T. Courtois, 201211

Commercial Enigma [1920s]

insecure

combines several 
permutations on 26 
characters…
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Rotor Stepping

Regular

odometer-like

+1
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Rotor Stepping

• Rotating a rotor: 

• N becomes C-1○N○C (p)

• C is a circular shift a↦b…

N
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Bâtons/Rods Attack
Used by French/British/Germans to break 

Swiss/Spanish/Italian/British ciphers in the 1930s…

• assumes only first rotor moving

• rotor wiring known

• guess which rotor is at right

• guess starting position (26)

• guess SHORT crib [plaintext]

• t=0 c=N-1 ○ Z ○ N (p)

• t=0 Z ○ N(p) = N(c)

• Z is an involution

• Rotating a rotors: 

• P becomes C-1○P○C (p)

• C is a circular shift a↦b…

• t=i Z ○ C-iNCi (p) = C-iNCi (c)

p

c

•attack worked until 1939 [cf. Spanish civil war]
•Germans: avoid the attack since 1929/30 

with a steckerboard

N

Z



Code Breakers

Nicolas T. Courtois, 201215

Bâtons/Rods Attack
Example: 

-guess crib = 14 letters plain

-guess which rotor is rightmost

-check ALL 26 starting position

pairs for Z obtained:

N(p)

N(c)

i=0

210
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Think Inside the Box

O =outputs

I = inputs

data??? key????????

Involution
confirms the 
key choice

like OK or “SAT”

rightmost rotor position

rightmost rotor position
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the Box – General Setting

O =outputs

I = inputs

data??? key????????

R/W

R/W
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Modern Cryptanalysis - SAT Solvers!

-
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UNSAT Immunity – Block Ciphers

Guess 78 bits 

=> Contradiction 
with SAT solver software
50 %of the time

We say that  for 8 rounds of GOST 
the UNSAT Immunity 
is at most 78
[Tatracrypt 2012]
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Guess Then Eliminate 

Depth-First Tree Search.

78 
bits

78
bits

78 
bits

X X

good
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SAT Immunity – 4 pairs

Guess these 68 bits.

=> all the other bits? 
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SAT Immunity – 4 pairs

Guess these 68 bits.

=> all the other bits 
are found in 400 s on 

one laptop i7 CPU 
 using CryptoMiniSat x64 2.92.

[Courtois Cryptologia vol 37, 2013]
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Military 
Enigma
[1930s]

stecker=
plugboard

Added in 6/1930:
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Stecker

Huge challenge for 
code breakers

*common point in all good Enigma attacks: 
eliminate the stecker, “chaining techniques”…
also for Abwehr
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Stecker

2 holes/letter

•6 plugs until Nov 1937
•variable 5-8 plugs…
•10 plugs Nov 1939=>most of the war

S=involution, 
6 fixed points

no plug => E->E etc.
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Military Enigma

involution, 13 pairs
picture by D. Davies
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Key Size

About 2380 with rotors

Only 276 when rotors are known.

5 main rotors were found by Polish 
mathematicians before WW2 started.

Same 3 rotors used since 1920s… 
until 1945!!!  BIG MISTAKE. 
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Part 1

Permutations
non-commutative

PoQ ≠ QoP 
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INI Methods
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Two Main Families of Machines

• Self-reciprocical = involution, 
• e.g. Enigma

• E/D switch: 
• e.g. Fialka, KL7, Typex…

E/INI

IN

keys, 
settings, 
etc…

OUT
message

transmitted
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Message key

Message key=session key=ephemeral key
Should never repeat for two different messages, makes encryption probabilistic

Transmitted to the receiver encrypted (E), must be decrypted (D) by the receiver.

E/INI

message key

message 
header

transmitted

daily key =
daily setting
(24 h)
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History of Enigma Initialization – 3 Periods

• 15 Sept 1938

• 1 May 1940

Method 1 – 2 Mistakes

Method 2 - 1 Mistake

Method 3 - 0 Mistakes

6 digits header = E(session key)
encryption done twice, 

lots of data with one « daily key »

9 digits header = 
twice E(session key) with a random

only 6 chars with the same key!

6 digits header 
no more repeated encryption
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Method 1 – 2 Mistakes

before 15 Sept 1938

E

daily settings: 
-rotors I III IV
-ring settings
-start position

3 digit « random »
message key

6-digit 
header

repeat twice

lots of 
redundant 

data - same 
daily key! 33

3 3

3
« fixed secret IV »

encrypted

shared



Code Breakers

Nicolas T. Courtois, 201234

Method 2 – 1 Mistake

15 Sept 1938 - 1 May 1940]

E

3 digit « random »
message key

9-digit 
header

repeat twice

only 6 digits 
with the same 
random start

position
daily settings: 
-rotors I III IV
-ring settings
-random start

3

3

3

3

33

«random IV »
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Method 3 – 0 Mistakes

after 1 May 1940

E

3 digit « random »
message key

6-digit 
header

once

perfectly 
randomised

method 
only 3 digits 

with a random start
positiondaily settings: 

-rotors I III IV
-ring settings
-random start

3
3

3

3
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Part 3

Polish Attacks

Rejewski Zygalski
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Three Periods in the History of Enigma

• 15 Sept 1938

• 1 May 1940

2 Mistakes

1 Mistake

0 Mistakes

Early Polish Methods
encryption done twice, 

lots of data with one « daily key »

Zygalski Method
implemented/used at BP

[Herivel Attack]
Turing-Welchman Bombes



Code Breakers

Nicolas T. Courtois, 201238

Method 2 – 1 Mistake

15 Sept 1938 - 1 May 1940 [sometimes also used later, e.g. Norway, Malta 1942]

E

3 digit « random »
message key

9-digit 
header

xyzxyz

only 6 digits 
with the same 
random start

position
daily settings: 
-rotors I III IV
-ring settings
-random start

3

3

3

3

33

«random IV »
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focus on repeated indicator:

15 Sept 1938 - 1 May 1940 [sometimes also used later, e.g. Norway, Malta 1942]

E

3 digit « random »
message key

c d e
c’d’e’

xyzxyz our 6 digits 
ciphertext 

headerdaily settings: -
rotors I III IV
-ring settings
-random complex 
key for the whole machine
(arguably not very useful)

3

3

3

3

33

«random IV »
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First 6 Steps

At steps 1 and 4
s
t
e
c
k
e
r

x

c

same random 
unknown letter

R’i

T=1 R’1 (x) = c
T=4 R’4 (x) = c’
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Key Principle

At steps 1 and 4

 the attacker can OBTAIN
pairs for:  

T=1 R’1 (x) = c
T=4 R’4 (x) = c’

s
t
e
c
k
e
r

x

c

same x

R’4
-1 ○ R’1

c ↦c’

IMPORTANT: R’4  is an 
involution => 
We get to know pairs for a 
special permutation R’1 ○ R’4 R’i
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Two Involutions

involution P

involution Q

x

y

z

can be factored(!)
[Rejewski Thm 
1930s]



Cryptanalysis  of KeeLoq

Courtois, 43

Two Involutions

Proof:
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Magic = Permutation Factoring! 

At steps 1 and 4

 the attacker can OBTAIN
pairs for:  

T=1 R’1 (x) = c
T=4 R’4 (x) = c’

s
t
e
c
k
e
r

x

c
R’4

-1 ○ R’1

BOTH are involutions 
=> 

we CAN recover BOTH by 
factoring R’1 ○ R’4
[due to Rejewski Theorem, they map 
cycles to identical cycles, cf. slide 128]
Lemma: requires 74 events on average

R’ican be recovered!
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Do We Have Enough Data ≥ 74?

At steps 1 and 4

 the attacker can RECOVER 
both R’4

-1 and R’1.

T=1 R’1 (x) = c 
T=4 R’4 (x) = c’ 

s
t
e
c
k
e
r

x

c

same x

before 1938, 2 mistakes, 
R4

-1 ○ R1 was fixed 
in all messages in 1 week or so…

 74 samples => recover R’i by factoring… 
=> recover all rotors and break keys…

Sept 1938 - 1 May 1940, 1 mistake, 
R4

-1 ○ R1 was different 
in each message, cf. Zygalski attack

 could be observed only once
 attacker can see when it has a fixed point 

= so called ‘females’ [from Polish/English 
pun same/samica].

R’i
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3b 

Second Generation Enigma Attacks

Rejewski Zygalski
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Conjugation

“Theorem Which Won World War 2”, 
[I. J. Good and Cipher A. Deavours, afterword to: Marian Rejewski, "How Polish Mathematicians Deciphered the Enigma", Annals of the 

History of Computing, 3 (3), July 1981, 229-232]

P and 
Q-1 o P o Q

have the same cycle structure 
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*Polish Bombe: worked until 1 May 1940

Short cycles…  assumed stecker not active.
required MANY messages from the same setting…

R’4
-1 ○ R’1

c ↦c’
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*Zygalski Attack: until 1 May 1940

Based on “females”: 

Cycles of length 1. 

AFKASF

Same key, same input, same output… +3 steps

T=1 R1 ○ S(x) = S(A) 
T=4 R4 ○ S(x) = S(A) N

Ri
Q

R1 = N-1 ○ Q ○ N 
R4 = C-4N-1C4 ○ Q ○ C-4NC4

s
t
e
c
k
e
r

S

S-1 ○ R1 ○ R4 ○ S    A ↦A

female

the same, high prob >≈ 0.75, no movement
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Conjugation

“Theorem Which Won World War 2”, 
[I. J. Good and Cipher A. Deavours, afterword to: Marian Rejewski, "How Polish Mathematicians Deciphered the Enigma", Annals of the 

History of Computing, 3 (3), July 1981, 229-232]

P and 
Q-1 o P o Q

have the same cycle structure 

S-1 ○ R1 ○ R4 ○ S  has a fixed point 
<=>
R1 ○ R4 has a fixed point Pty independent on stecker!
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*Zygalski Attack: until 1 May 1940

fixed points for R1 ○ R4

Stacking them allowed to 
determine the key uniquely…
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*Zygalski Attack: until 1 May 1940

Gave fixed points for ALL 
263 settings of ‘cleartext IV’ [first 3 letters]

Stacking them allowed to 
determine the key uniquely…

1 hole: for this position of 3 rotors IFF
R1 ○ R4 has a fixed point, 
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*Zygalski Attack: until 1 May 1940

Gave fixed points for ALL 
263 settings of ‘cleartext IV’ [first 3 letters]

Stacking them allowed to 
determine the key uniquely…

1 hole: for this position of 3 rotors IFF
R1 ○ R4 has a fixed point, 

(a hole 40% of the time)

P(a 6-letter header has a female) ≈ 1/9
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Part 4

British BP
Enigma Attacks 

=3rd generation=
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Turing Attack – Preliminary Step
1. Rejecting possibilities

2. Some are still possible.

3. We obtain pairs, 
KPA + rotors move

4. Find a loop
g=>e=>w…

5. Allows to reject 
stecker connections…

6. Did NOT work well. (too few loops)

7. Feasible with Welchman: 
many extra connections

Main idea: cycles do NOT 
depend on stecker 
connections

The longer the crib, the easier to reject!!!!

WW2 messages had 100-500 characters only, rare exceptions
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Turing Attack = Crib Loops [Short Cycles]
1. Rejecting possibilities

2. Some are still possible.

3. We obtain pairs, 
KPA + rotors move

4. Find loops

5. Allows to reject 
stecker connections…

6. Did NOT work well. (too few loops)

7. Feasible with Welchman: 
many extra connections

Main idea: cycles CAN eliminate 
most stecker connections 
(1 guess may be needed)

A=>M=>E =>A

9    7   14

150 million million = 247
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Eliminating the Stecker [Turing Method]
• S is the stecker (involution)

• T=i Ri ○ S(p) = S(c)

• T=9 R9 ○ S(A) = S(M)

• T=7 R7 ○ S(M) = S(E)

• T=14 R14 ○ S(E) = S(A)

R7○R9○R14○ S(E) = S(E)

p

c

s
t
e
c
k
e
r

Ri

S

A=>M=>E =>A

9     7   14

Needed 20 letter cribs, 
4 loops, preferably 
sharing letter E

Bombes implemented this:
serial connection of several simulated Enigmas
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Turing-Welchman Bombe

240 were built!

serial connection of several unsteckered Enigmas

R7○R9○R14○ S(E) = S(E)

IMPORTANT: 
Bombes ASSUMED MIDDLE ROTOR not moving 
(large proba for shorter cribs, if fails, repeat…)

guess/test all 26 
possible S(E)
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Accept – Reject a guess for S(E)

Closed loop 
connection

implemented by the bombe

R7○R9○R14○ S(E) = S(E)

Correct S(E) is a fixed point!

A correct 
=>The current comes back to A
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Miracle: 95% of values rejected in 1 step – Simultaneous Scanning

• If A incorrect, 
the current makes 
several loops 
and all active 
values 
are incorrect!

• Most values rejected 
in 1 step

• What remains: 
123 fixed points, 
correct guesses!
(machine stops). 

In a closed loop

R7○R9○R14○ S(E) = S(E)
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Most Frequent Case:

• A incorrect, 
AND all the settings 
were incorrect 

• 26 wires become ‘live’ 

• what remains: 
0 fixed points, 

(machine continues 
to next setting, rotate all drums) 

In a closed loop

R7○R9○R14○ S(E) = S(E)
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Philosophy 1920s-Modern Attacks

For any cipher old/modern

1. Guess X bits (subset of the key)

2. Deduce Y bits

3. Find contradiction 
(large proba P=1-small)
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Turing Attack = Crib Loops [Short Cycles]
1. Rejecting possibilities

2. Some are still possible.

3. Allows to reject 
testing start pos+1 stecker connection…

Stop when no contradiction found A->A again

263 settings at 1800rpm, 11 minutes to check 263 settings, 
>90% of possibilities for S(E) could be rejected in 1 clock 
most wires active, 123 left = simultaneous scanning, electrical current was much 
faster than the mechanical movement of rotors.
remark: most of the time spent rejecting settings, false positives can be treated 
by additional checks with a bombe or another machines
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Turing Attack = Crib Loops [Short Cycles]
1. Rejecting possibilities

2. Some are still possible.

3. Allows to reject 
settings+stecker connections…

Stop when no contradiction found A->A again

Price to pay: 
•guess 3/5 rotors+order – 10.6
•guess settings of rotors – 263

•guess some equation like S(E)=B – 26-1

Two loops with letter E => machine stops every 263-1-1 steps in a plausible 
configuration… NOT good enough!!! Too many false positives
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Turing Attack = Crib Loops [Short Cycles]
1. Rejecting possibilities

2. Some are still possible.

3. Each loop allows to reject 25/26 
of cases guesses…

4. Did NOT work well. (too few loops=>long cribs, 20 characters + several loops preferred)

not directed, no 
arrows, 
bi-directionnal
relations
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Turing Attack = Crib Loops [Short Cycles]

4. Did NOT work well. (too few loops=>long cribs, 20 characters)

5. Improved by Welchman: 
many extra deductions, less false positive stops, 

=> 10+ letter cribs only required!!! 
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Turing Attack = 4 cycles, 1 ‘central’ letter [at place with several connections]

1. Rejecting possibilities

2. Some are still possible.guess S(W)
=>test it
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Welchman - Observation
1. Rejecting possibilities

2. Some are still possible.

…and this goes a lot further.

guess S(W)=T
=>test it

Remark that T appears also 
in our menu: 
we get 
2 guesses for the price of 1!
(amplification)

T

W
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Contd.

The Turing attack has used 1 loop to find contradictions most 
of the time, and with 2-3 loops/chains it would stop more 
rarely, but still many false alarms. 

Welchman has found how to CONNECT circuits for several 
loops/chains together, resulting in dramatically improved 
capability to find contradictions for 1 assumption => less stops 
=> shorter cribs.   

Any pair of “nodes” can be connected with the diagonal board.
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Welchman Bombe Deductions [Diagonal Board]

Testing 3 rotors + 1 pair for S Contradiction found 
MORE frequently

all these 
implemented
in 1 bombe

allowed shorter cribs (10+ letters)=>
huge savings!!!!! 

another place 
same menu 
letter G

Welchman Exploited involution 
pty of the stecker=>more deductions
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Guess-Then-Determine
or UNSAT Attack 
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Guess Then Eliminate 

Depth-First Tree Search.

78 
bits

78 
bits

78 
bits

78+10 
bits

78+10 
bits

X X

X

X
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Guess-Then-Determine: 
Amplification
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Amplification

Killer example:

• Slide attacks – unlimited.
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Sliding Attacks
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Sliding Attacks [1977]
• Periodic Cipher

F F F
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Sliding Attack
Classical Sliding Attack [Grossman-Tuckerman 1977]: 

• Take 2n/2 known plaintexts

• Imagine that we have some “slid pair” (Pi,Pj) s.t.

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

Pi

Pj

Pj Ci

Cj
Ci

F
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One Step
• Assumption: F( Pi ) = Pj n bits

• Consequence: F( Ek(Pi) ) = Ek(Pj) 2n bits, Amp.=2

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

Pi

Pj

Pj Ci

Cj
Ci

F
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One Step
• Assumption: F( Pi ) = Pj n bits

• Consequence: F( Ek(Pi) ) = Ek(Pj) 2n bits, Amp.=2

THIS CAN be iterated! 

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

Pi

Pj

Pj Ci

Cj
Ci

F
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One Step
• Assumption: F( Pi ) = Pj n bits

• Consequence: F( Ek(Pi) ) = Ek(Pj) 2n bits, Amp.=2

• Also: F( E2
k(Pi) ) = E2

k(Pj) 3n bits, Amp.=3

… … …

• ∀m F( Em
k(Pi) ) = Em

k(Pj) Unlimited! 
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Sliding Attack
Classical Sliding Attack [Grossman-Tuckerman 1977]: 

• Take 2n/2 known plaintexts

• We have a “slid pair” (Pi,Pj) s.t.

Gives an unlimited number of other sliding pairs !!!

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

Pi

Pj

Pj Ci

Cj

=>unlimited amplification

Ci

F
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Black Box Reduction

We transform a CPA on Ek 

into a KPA on F

64
rounds

64
rounds

64
rounds

64
rounds

64
rounds

Pi

Xj

Ci

many pairs!!! 
=>a lot easier to break!

Yi

F

F
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KeeLoq Cipher

• In 1995 sold to Microchip Inc for 
more than 10 Million of US$.

??
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How Secure is KeeLoq

Miserably bad cipher, main reason:
its periodic structure: cannot be defended. The complexity of most attacks on 
KeeLoq does NOT depend on the number of rounds of KeeLoq.
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Notation

f_k() – 64 rounds of KeeLoq

g_k() – 16 rounds of KeeLoq, prefix of f_k().

We have: E_k = g_k o f8_k.

528 = 16+8*64 rounds.
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Sliding Attacks – 2 Cases
• Complete periodicity [classical].

• Incomplete periodicity [new] – harder.

– KeeLoq: G is a functional prefix of F. Helps a lot.

F F F

F F F G
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KeeLoq and Sliding
Apply Classical Sliding? Attack 1.

• Take 2n/2 known plaintexts (here n=32, easy !)

• We have a “slid pair” (Pi,Pj) s.t. 

Classical sliding fails – because of the “odd” 16 rounds:

64
rounds

64
rounds

64
rounds

64
rounds

16
r

64
rounds

64
rounds

64
rounds

64
rounds

16
r

Pi

Pj

Pj

Cj

Ci
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Classical Sliding –Not Easy
Classical Sliding Attack [Grossman-Tuckerman 1977]: 

• Take 2n/2 known plaintexts (here n=32, easy !)

• We have a “slid pair” (Pi,Pj).

HARD - Problem:

64
rounds

64
rounds

64
rounds

64
rounds

16
r

64
rounds

64
rounds

64
rounds

64
rounds

16
r

Pi

Pj

Pj

Cj

Ci

What’s the values here ?

528512

464 528
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Algebraic Attack:

We are able to use Ci,Cj directly !

Merge 2 systems of equations:

64
rounds

64
rounds

64
rounds

64
rounds

16
r

64
rounds

64
rounds

64
rounds

64
rounds

16
r

Pi

Pj

Pj

Cj

Ci

Ci

528512

464 528

ignore all these !

common 
64-bit key

32 
bits

32 
bits

32 
bits

32 
bits

0 16

(like 2 different ciphers)
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System of Equations

64-bit key. Two pairs on 32 bits. 
Just enough information.

Attack:

• Write a system of equations.
• Gröbner Bases methods – miserably fail.

• Convert to a SAT problem
• [Cf. Courtois, Bard, Jefferson, eprint/2007/024/].

• Solve it. 
• Takes 2.3 seconds on a PC with MiniSat 2.0.
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KeeLoq is badly broken

Practical attack, tested and implemented: 

Courtois, Bard, Wagner: Algebraic and Slide Attacks on 
KeeLoq in FSE 2008
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Another Attack on KeeLoq

[Tatracrypt 2007]
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Iterated Permutation Attacks [Tatracrypt07]

E_k = g_k o f8_k.

• Guess 16 key bits.

• Confirm if correct. (!)

• Recover missing key bits by 
– an algebraic attack.

– correlation attack

– other..
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Cycles in RF/RP

Function Permutation

.

.

.

.

.

.
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Random Functions
n bits -> n bits 

The probability that a given point has 
i pre-images is 1/ei!.

Fixed points: 

number of fixed points of f(x) 

number of points such that g(x)=0

with g(x) = f(x)-x .

f

y

?x
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Fixed Points for 64 rounds of KeeLoq

f_k is expected to have  at least 1 fixed points 
for 1-1/e  0.63 of all keys. 

f_k is expected to have at least 2 fixed points 
for 1-2/e  0.26 of all keys.

fk

x

x
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Cycles for 64 Rounds of KeeLoq
n bits -> n bits 

Theorem. The expected number 
of cycles in a permutation 
on n bits is equal to H2

n where 

is the k-th Harmonic number 

 is the Euler-Mascheroni constant

P

y

x
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Cycles and Random Permutations
n bits -> n bits 

Corollary.

n=32 => 23 cycles on average 

(of decreasing size 2/3*232 … 1).

About 11 are of odd size.

P

y

x
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Fact:
If we have (a nearly complete) table of F8 and E, for 

two permutations, it is easy to distinguish them.

(this will be done for f_k without knowing the key).

Why ?

What happens when we iterate a permutation (F2):

• Cycles of even size split in two

• Cycles of odd size remain.

So between F and F2 we expect that the number of 
even-size cycles is dived by two.

RP

if we do not count 
cycles with repeated 

sizes!
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Odd Cycles in P8

So between P and P2 we expect that the number of 
even-size cycles is dived by two.

F  F2  F4  F8

11.5  5.75  2.8  1.4

So we expect that P8 has 1-2 even-length cycles 
instead of 11-12. Our distinguisher has negligible 
probability of being wrong…

if we count 
without 

multiplicity
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**All Known Attacks
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Part 5

Involutions

In 
Modern Block Ciphers
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Involutions

Theorem: Let Q be an involution. 

The expected number of fixed points is as large as 2n/2 instead of O(1) in a 
random permutation.

Proof: 
see page 596 of Philippe Flajolet, Robert Sedgewick, 
Analytic Combinatorics, Cambridge University Press.

 We already had this all over the place in our works, 
“semi-transparent cylinder” syndrome [Courtois],
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Part 5

GOST Cipher
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GOST

• Key = 2256 initial settings. 

• S-boxes = 2512 possibilities.

– But if bijective 2354 possibilities.

• Total 2610 (or 2768). 
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Consensus on GOST Security [2010]

Axel Poschmann, San Ling, and Huaxiong Wang:

256 Bit Standardized Crypto for 650 GE – GOST Revisited, 

In CHES 2010

“Despite considerable 
cryptanalytic efforts 
spent in the past 20 years, 
GOST is still not broken.”
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6.2. Structure of GOST
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Self-Similar Key Schedule
Periodic Repetition + Inversed Order
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Last 16 Rounds of GOST

“Theorem Which Won World War 2”, 
[I. J. Good and Cipher A. Deavours, afterword to: Marian Rejewski, "How Polish 

Mathematicians Deciphered the Enigma", Annals of the History of Computing, 
3 (3), July 1981, 229-232]

P and 
Q-1 o P o Q

have the same cycle structure 
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Last 16 Rounds of GOST

“Theorem Which Won World War 2”, 

 Has exactly 232 fixed points (order 1) 
and 264-232 points of order 2.

 A lot of fixed points (very few for DES). 
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Black Box Reductions
Reflection Attack
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Reflection – Happens 232 Times - KPA

• guess A det C 
info=64 cost=2-32

• guess B
info=64+64 cost=2-64

• [guess D
info=64 cost=2-32 ]

Summary: we get 2/3 KP for 8R for 
the price of 2-96/2-128. 

break 8R 2KP 2127

=> break 32R D=232 T=2223

break 8R 3KP 2110

=> break 32R D=232 T=2238
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6.8. Double Reflection Attack
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2x Reflection, Happens About Once:

• guess C det A
info=64 cost=2-32

• guess B det Z
info=64+64+64 cost=2-64

• [guess D
info=64 cost=2-32 ]

Summary: we get 3/4 KP for 
8R for the price of 2-96/2-128

break 8R 3KP 2110

=> break 32R D=264 T=2206

break 8R 4KP 294

=> break 32R D=264 T=2222
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Fixed Point Attack
(already seen for KeeLoq last step Attack 3)
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First 16 Rounds of GOST
• Same perm, same key

P P
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First 16 Rounds of GOST

P  50 %
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Breaking Full GOST
Black Box Reduction:
Pseudo-Sliding Attack
[Cryptologia Jan 2012]
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One Encryption

E
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Two Encryptions with A Slide

not

similar
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Reduction
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New Attack on GOST

264 KP

guess A,B

correct P=2-128

P=2-128

=>
4 pairs 

for 8 rounds
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Other Attacks on GOST

Best single key attack (for any key): 

D=264 T=2179

Nicolas Courtois: An Improved Differential Attack on Full GOST, 
in ``The New Codebreakers — a Festschrift for David Kahn'', LNCS 9100, Springer, 2016.

long extend version: eprint.iacr.org/2012/138.


