
Exploits Against Software and How To Avoid Them

Nicolas T. Courtois
- University College London

Goals of Attackers

CompSec COMPGA01

Nicolas T. Courtois, 2009-20183

Break In

Stage 1:
Get to run some code

(even without privileges).
Stage 2:
Gain admin/TCB access, usually by calling

other local programs and exploiting their
vulnerabilities.

Stage 3:
Exfiltrate data, encrypt, and ask for a ransom

payment in bitcoins etc.

CompSec COMPGA01

Nicolas T. Courtois, 2009-20184

Goals for Software Exploits

• crash software (can be DOS)
• crash/infect hardware

(e.g. hard drive, USB systems and devices)

• get some data or side channels
• inject arbitrary code (up tos to TCB access)

these also
happen
accidentally…

Reading

Nicolas T. Courtois, 2009-20185

How to Break Into Computers?

• Stack attacks: Chapter 10.4.

• Defences: Chapter 10.7.

• Chapter 14: Software Security

What’s Wrong?

CompSec COMPGA01

Nicolas T. Courtois, 2009-20187

Software Vulnerabilities

• Buffer overflow
• Input validation problems
• Format string vulnerabilities
• Integer overflows,
• CPU bugs
• Failing to handle errors / exceptions properly

Principles at stake:
• Usability/business contradicts security almost always
• Complexity, Common Mechanism,
• Same origin policy

CompSec COMPGA01

Nicolas T. Courtois, 2009-20188

*Android is NOT Like Linux

• Each application has a different set of
explicit permissions

• Since 2015, permissions
are awarded at runtime
[previously install time]

• Better Least Privilege
– no more Confused Deputy

and Ambient Authority

Attack Families

• Microsoft “STRIDE” categorization of threats
from design / implementation errors
– Spoofing, Tampering, Repudiation, Information

Disclosure, Denial of Service, Elevation of Privilege

• Common Weaknesses Enumeration (CWE)
a database of software errors leading to vulnerabilities.
See

CWE/SANS Top 25 Most Dangerous
Software Errors (retrieved 2019):

http://cwe.mitre.org/top25/index.html

9

CWE part 1

10

Rank ID Name Score

[1] CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 75.56

[2] CWE-79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting') 45.69

[3] CWE-20 Improper Input Validation 43.61
[4] CWE-200 Information Exposure 32.12
[5] CWE-125 Out-of-bounds Read 26.53

[6] CWE-89 Improper Neutralization of Special Elements used in an SQL Command
('SQL Injection') 24.54

[7] CWE-416 Use After Free 17.94
[8] CWE-190 Integer Overflow or Wraparound 17.35

[9] CWE-352 Cross-Site Request Forgery (CSRF) 15.54

[10] CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.10

[11] CWE-78 Improper Neutralization of Special Elements used in an OS Command
('OS Command Injection') 11.47

[12] CWE-787 Out-of-bounds Write 11.08
[13] CWE-287 Improper Authentication 10.78
[14] CWE-476 NULL Pointer Dereference 9.74

[15] CWE-732 Incorrect Permission Assignment for Critical Resource 6.33

[16] CWE-434 Unrestricted Upload of File with Dangerous Type 5.50

CWE part 2

11

Rank ID Name Score

[1] CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 75.56

[2] CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting') 45.69

[3] CWE-20 Improper Input Validation 43.61
[4] CWE-200 Information Exposure 32.12
[5] CWE-125 Out-of-bounds Read 26.53

[6] CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') 24.54

[7] CWE-416 Use After Free 17.94
[8] CWE-190 Integer Overflow or Wraparound 17.35
[9] CWE-352 Cross-Site Request Forgery (CSRF) 15.54

[10] CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.10

[11] CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection') 11.47

[12] CWE-787 Out-of-bounds Write 11.08
[13] CWE-287 Improper Authentication 10.78
[14] CWE-476 NULL Pointer Dereference 9.74

[15] CWE-732 Incorrect Permission Assignment for Critical Resource 6.33

[16] CWE-434 Unrestricted Upload of File with Dangerous Type 5.50

[15] CWE-732 Incorrect Permission Assignment for Critical Resource 6.33

[16] CWE-434 Unrestricted Upload of File with Dangerous Type 5.50

[17] CWE-611 Improper Restriction of XML External Entity Reference 5.48

[18] CWE-94 Improper Control of Generation of Code ('Code Injection') 5.36

[19] CWE-798 Use of Hard-coded Credentials 5.12

[20] CWE-400 Uncontrolled Resource Consumption 5.04

[21] CWE-772 Missing Release of Resource after Effective Lifetime 5.04

[22] CWE-426 Untrusted Search Path 4.40

[23] CWE-502 Deserialization of Untrusted Data 4.30

[24] CWE-269 Improper Privilege Management 4.23

[25] CWE-295 Improper Certificate Validation 4.06

Some Recent Bug Bounty Programs

List from tripwire.com (Commercial Integrity Software)
(https://www.tripwire.com/state-of-security/security-data-protection/cyber-

security/10-essential-bug-bounty-programs-2017)
12

Company Model Min pay Max pay

Apple Invite-only - $200,000

Facebook Open $500 -

Github Open $200 $10,000

Google Open $300 $31,337

Intel Application $500 $30,000

Microsoft Open $500 -

US Pentagon Pilot run $100 $15,000

Tor Project Open $100 $4,000

Uber Open - $10,000

Wordpress Open $150 -

Vectors of Attack - Inputs

CompSec COMPGA01

Nicolas T. Courtois, 2009-201814

Software Input Exploits -Targets

Exe programs:
• command line arguments
• environment variables
• configuration files / settings changed in the registry by

another program…

• network packets
• RPC or API or shared memory [e.g. bitcoin client].

Windows dlls / Unix runtime precompiled libraries:
• function calls from other programs

CompSec COMPGA01

Nicolas T. Courtois, 2009-201815

Exploit against Linksys router [2004]

It has a ping utility. Pretty innocent?

The attacker types:

127.0.0.1|ls>/tmp//ping.log

CompSec COMPGA01

Nicolas T. Courtois, 2009-201816

Danger of Environment Variables

In UNIX:

• Set LD_LIBRARY_PATH system variable
to avoid the standard precompiled libraries…

• Hacker puts his own libraries in his own
directory…

Fix: modern C runtime libraries in Unix stopped using
LD_LIBRARY_PATH variable when the euid is
not the same as the ruid…(like pwd program).

Normal case, 99.999% of the time.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201817

****Recall:
In Unix each process has several user IDs:

• Real User ID == ruid, identifies the owner of the
process

• Effective User ID == euid, determines current
access rights

CompSec COMPGA01

Nicolas T. Courtois, 2009-201818

set-uid programs

Definition:

A “set-uid program” (property acquired at
creation/compilation/installation time)
is a program that assumes the identity and has
privileges of the owner of the program,

though a different user uses it.

Examples:

• passwd

• su, sudo

BTW: if copied to a “user” directory,
they will stop working!

Injection Attacks vs. Path

• path traversal or path abuse…
• what if my path is or contains “.”?

– See later slides.

• what if the user can write files of their
choice and uses “../../filename”?
– Quiz: what if a Microsoft compiler is given this

path???? any special privileges?
How do we call this sort of attack? C.D.

19

CWE-22
Improper Limitation of a
Pathname to a Restricted
Directory ('Path Traversal')

Exercise:
Cherrypy web framework
documentation, on how to
implement file downloads

(1) What is going on here?
(2) Find the bug.
(3) Why is this a case of a
confused deputy?
(4) How do you fix it?

20

*Path Traversal

Code Injection Attacks

• Code injection (e.g.: the eval function)

• OS Command Injection
– In C/C++ we use

system(some Unix or Windows command in a char * buffer);

os.system(“procmail %s” % user_input)

21

CompSec COMPGA01

Nicolas T. Courtois, 2009-201822

More Attacks on PATH in Unix

Now imagine that any “setuid program” contains the
following line:

system(“ls … ”);

OOPS…

there are several ways to use this to run
any program as root…

CompSec COMPGA01

Nicolas T. Courtois, 2009-201823

More Attacks on PATH in Unix

A “setuid program” ABC contains the following line:

system(“ls …”);

The user sets his PATH to be “.” and places
his own program ls in this directory.

This program will be run as root!

(remark: the program A can reset PATH or do checks on
PATH…)

CompSec COMPGA01

Nicolas T. Courtois, 2009-201824

Can this be done remotely?

• In PHP language, used by all web servers, they have
PASSTHRU() function that executes arbitrary code…

• Assume it contains a user input that comes from the web
client browser.

• insert “; command231” or “| command231”.
• This will make the server execute command231 and

output the result to the web page displayed.

PHP have later banned this
and many other things from the PHP language…

CompSec COMPGA01

Nicolas T. Courtois, 2009-201825

Another Classical Exploit in Unix

• the IFS variable: the characters that the
system considers as white space

•
now add “s” to the IFS set of characters

– system(ls) becomes system(l)
– a function l in the current directory

will be run as root…

CompSec COMPGA01

Nicolas T. Courtois, 2009-201826

Same Origin Policies

• Applies to scripts that run in browsers
• Applies to browser tabs/windows.
• When servers are manipulating cookies.

• Origin = domain name + protocol + port
– all three must be equal
– however,

some access may be allowed for pages
from same domain, but not same host

CompSec COMPGA01

Nicolas T. Courtois, 2009-201827

Threats:

• Impersonation of a Legitimate User,
Session Hijacking
– violating the trust a website places in a remote user,

allowing the attacker to initiate HTTP requests in the
context of the remote user
or impersonate the remote user entirely [e.g. continue
connection to a bank]

• Impersonation of a Legitimate Website (Phishing)
– violating the trust a user places in a remote site by

impersonating the site in whole or in part
– e.g. subtle MIM attacks,

typically . the user thinks A, the server view is B

CompSec COMPGA01

Nicolas T. Courtois, 2009-201828

Attacks Against Web Servers

• (SQL) injection attacks: confusion data/code.
• Cross site request forgery (CSRF)==Session Riding
• Cross site scripting (XSS)

CompSec COMPGA01

Nicolas T. Courtois, 2009-201829

Unix and Web Servers

• Old times: running as root. Needed to open port 80 < 1024.
• Exploit the web server =>you become root.

• Solution: containment prevention:
limiting the powers of the server.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201830

Dropping Privileges

• Unix provides several ways to drop
privileges:

– setuid(nobody)

– chroot()

– FreeBSD’s jail()

– OpenBSD’s systrace()

CompSec COMPGA01

Nicolas T. Courtois, 2009-201831

chroot(/home/www)

• change the effective root directory:

CompSec COMPGA01

Nicolas T. Courtois, 2009-201832

jail()

• Unix provides several ways to drop
privileges:

– setuid(nobody)

– chroot()

– FreeBSD’s jail(): same but stronger:
• No IPC outside of jailed apps

• Even root cannot load Kernel modules, create device
files or affect “real” machine e.g. cannot reboot.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201833

systrace

• Unix provides several ways to drop
privileges:

– setuid(nobody)

– chroot()

– FreeBSD’s jail()

– OpenBSD’s systrace():
limits which system calls may be used.

• Buffer overflows - later
• Race conditions [already covered]
• Malware and Ransomware – another lecture.

For web servers specifically:
• (SQL) injection attacks: confusion data/code.
• Cross site request forgery (CSRF)
• Cross site scripting (XSS)

SQL Attacks!

34

https://xkcd.com/327/

[1] CWE-89: Improper Neutralization of Special
Elements used in an SQL Command

== 'SQL Injection’ ==
• “Insecure Interaction Between Components”

– Application ↔ SQL database.
– The bug: the application accepts some low integrity input. It then constructs

an SQL query based on that input without sanitizing it.
– Result: the SQL database interprets it, in a way unintended by the

application.

***Related to:
– [2] CWE-78 Improper Neutralization of Special Elements used in an OS

Command
('OS Command Injection')

– [4] CWE-79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

– [9] CWE-434 Unrestricted Upload of File with Dangerous Type
– [12] CWE-352 Cross-Site Request Forgery (CSRF)
– [22] CWE-601 URL Redirection to Untrusted Site ('Open Redirect')

35

SQL Injection - Attacker Goals

• Specific attacks:
– extract secret information (confidentiality)
– Corrupt/delete other user's records (integrity)

• Generic attacks (Elevation of Privilege):
– Read the full password table (→ log in as admin).
– Insert a new admin account with known password.
– Modify the permission table to make yourself admin.

36

SQL Injection Setting

37

Motorway Toll Pay As You Go?

38

• Imagine a toll station with a camera with OCR and
direct database access:
– Car with number plate ‘ OR 1=1; --
– Car with number plate ‘; DROP TABLE cars; --

?

***Classical SQL Injection

• What is the vulnerability? Provide $user and $password!
– Log in with $user=“admin”, $password=“’ OR ‘1’=‘1”

or even $password=“’; DROP TABLE users; ‘”
• What now?

– Use $user=“’; DROP TABLE users; --”
– Or: $password=“’OR’’=‘“

39

function check_user($user, $password) {
if (connect()) {

$password = substr($password, 0, 8);
$sql = "select * from users where us = '$user' and pw = '$password'";
$result = mssql_query($sql);
if (mssql_num_rows($result) == 1) {

setcookie("user",$user); setcookie("password",$password); return 1;
} else {

?> <h3>Sorry, you are not authorized!</h3> <? return 0;
}

}
}

CWE-352:
Cross-Site Request Forgery (CSRF)

• “Insecure Interaction Between Components”
– Web-client ↔Web-Server
– The bug: a web-client is confused by an adversary into

submitting a request to an honest web-server using the
client credentials with the web-server.

• When is that an issue?
– Web-server relies on user's identity for some actions.
– Web-server accepts actions in forms or URLs.
– Attacker can determine the right inputs for all forms.
– Attacker can lure the victim to a malicious page while

logged on.

40

Cross-Site Request Forgery Setting

41

Cross-Site Request Forgery Principles

• Confused Deputy
– Alice's web-client is confused into performing an

action that seems to be authorized by Alice, but that
in fact grants privileges held by Alice to the
adversary.

• Ambient Authority
– The web-client security model and authentication

based on “cookies” always acts with the privileges of
Alice when interacting with the web-server she is
logged in.

42

*Mitigations

• Options: confirm origin of authority and request.
– Make “GET” requests side-effect free.
– Include within each (valid) form an authenticator that the

adversary cannot guess. Check for the authenticator
before acting on a request.

– Check the HTTP “referrer” or “origin” field of the request
before executing it.

– Request re-authentication for every action.

• Why is all this so hard?
– HTTP requires web developers to re-define a session

layer for each application. No standard way of managing
sessions → errors.

43

Direct Cross Site Scripting (XSS)

• Alice visits a benign webpage. Attackers add a malicious
script to this site, e.g., disguised as useful component, or
an advertisement (sometimes called “Malvertising”).

• Alice’s browser trusts the script (it is from the benign site).
• Consequently, the script runs under the privileges of the

benign site.
– Problem: The script can access the cookie,

e.g., send this cookie to the adversary.
• How can you get the script into the site?

44

Benign web-page

evil
script

Alice visits the
target site

target site

malicious site

Cross Site Scripting in Practice: Reflective XSS

• Lure Alice into sending a script to the server (e.g., as her “name”).
• The server reflects back the script to Alice (e.g., shows the “name”).
• Alice’s browser gets the webpage with the script and executes it.
• Combination: 2 components: malicious link to click and “innocent” Javascript.
• http://www.example.com/welcome.html?name=Joe
• http://www.example.com/welcome.html?name=<script>alert(document.cookie)

</script>
45

Alice visits the
target site

target site

malicious site
Alice, click this link:
https://target.site?user=<? [evil script] ?>

Benign web-page

evil
script
evil

scriptWelcome

*this attack is
invisible from the
server side!

Buffer Overflow
since 1972!!!

CompSec COMPGA01

Nicolas T. Courtois, 2009-201847

Software Buffer Overflow Exploits

I will explain in details only 1 type of buffer overflow attack…
Stack Smashing

There are many other types of software vulnerabilities…
Study of these requires a lot of technical expertise about

programming, compilers, assembly and CPUs…

CompSec COMPGA01

Nicolas T. Courtois, 2009-201848

Buffer Overflow History

Extremely common since the 1980s.

Consistently about 50 % of all CERT advisories.

Usually leads to a total compromise of the machine…

CompSec COMPGA01

Nicolas T. Courtois, 2009-201849

**Example: CWE-2011-1938

CompSec COMPGA01

Nicolas T. Courtois, 2009-201850

Can Programmers Get It Right?

Lot of evidence around that they cannot.
• the behavior of Turing machines is very HARD to analyse,

– cf. Rice thm.
• it is usually easier to rewrite code from the scratch than to find all bugs

in it
• software economics, time to market, code re-use etc…

Major problems also occur at the compiler and runtime level…
(even CPUs have bugs that can be used for exploits).

CompSec COMPGA01

Nicolas T. Courtois, 2009-201851

Problems with C and C++

• C and C++ particularly dangerous
– Fast, therefore used in servers and all critical code

(performance-wise and security-wise)
– allows arbitrary manipulation of pointers

• but not outside the virtual 2 Gbyte space allocated by the OS

CompSec COMPGA01

Nicolas T. Courtois, 2009-201852

Software Under Attack

Main goal:
inject arbitrary code through standard input
channels of the program.

Input-dependent vulnerabilities.
Excessively common in software we use
every day… Unix and Windows alike…

CompSec COMPGA01

Nicolas T. Courtois, 2009-201853

Exploit =
specially crafted input

that allows a certain task to be accomplished
compromising the security policy
usually executing arbitrary code.

Goal: execute with the privilege level of the program:
• web server running as superuser…
• Ordinary programs running as user…

Furthermore, injected code may use another
vulnerability to permit privilege escalation.

Buffer Overflow Attack:
Stack Smashing and

ASM Code Injection in C

CompSec COMPGA01

Nicolas T. Courtois, 2009-201855

Buffer Overflow in C

char command[256]=“”;
allocated from the stack.

Now imagine we input longer data than 256
bytes and use strcpy(command,*input_data).

In theory: “undefined behaviour”..
In practice: we can predict what will happen.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201856

historical roots

Since ever, in CPU assembly and in compiling
structured programs, the habit is to save the
state of the CPU when calling a sub-routine.

And saving the return address.
It is essential which comes first…

otherwise there would be no such attack.

This is saved on the process stack.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201857

Process Memory Layout

Stack

Grows toward
low memory

Heap

Grows toward
high memory

Text
• Text: loaded from

exec code and read-
only data
size fixed at
compilation

• Heap: runtime
allocated objects,
large (2 Gb)

• Stack: LIFO, holds
function arguments
and local variables,
small size (256 K)0xC0000000

0x40000000

0x08048000

CompSec COMPGA01

Nicolas T. Courtois, 2009-201858

Calling a Sub-Routine in C

Stack

PUSH PULL

on every
CPU
since
ever…

Stack Stack

CompSec COMPGA01

Nicolas T. Courtois, 2009-201859

Stack Frames for one C Function f

Stack Stack Stack

params of f

return address

saved bottom of stack

local variables

built in this order

CompSec COMPGA01

Nicolas T. Courtois, 2009-201860

exploit on f

Stack

params of f

return address

saved bottom of stack

local variables increasing
addresses

void f(params)
{

char command[256]=“”;

…

strcpy(command,sth)
}

size
easy to
guess

overwrite

CompSec COMPGA01

Nicolas T. Courtois, 2009-201861

exploit on f

Stack

params of f

return address

saved bottom of stack

local variables increasing
addresses

void f(params)
{

char command[256]=“”;

…

strcpy(command,sth)
}

easy to
guess

overwrite
shell code

0x80707050

CompSec COMPGA01

Nicolas T. Courtois, 2009-201862

when f finishes

Stack

params of f

return address

saved bottom of stack

local variables

return
address

shell code

0x80707050

the frame buffer was
de-allocated, data

still there

CompSec COMPGA01

Nicolas T. Courtois, 2009-201863

Reliability
up to very high,

up to 100%
(there are stable exploits,

never ever fail
and produce consistent results)

Examples of code:
http://shell-storm.org/shellcode/

Hackers vs. Defenders
Advanced Exploits

CompSec COMPGA01

Nicolas T. Courtois, 2009-201865

Solutions (1)
• use type and memory safe languages (Java, ML)

• clean the de-allocated frame buffer: slow!!!

Partial solutions (not perfect)

• certain forms of access control?
– yes, replace pointers by use of “un-forgeable reference” tokens

• sandboxing and “secure” VM techniques.

• store things in a different order:

ASLR = Address Space Layout Randomisation – at the runtime!
– suddenly it makes a lot of sense to recompile the Apache web server

software on each server. Reason: 75 K copies, Slammer worm.
• OpenBSD (enabled by default)

• Linux – weak form of ASLR by default since kernel 2.6.12. (much better with the Exec Shield patch for Linux).

• Windows Vista and Windows Server 2008:
– ASLR enabled by default, although only for those executables and dynamic link libraries specifically linked to be ASLR-

enabled. So only very few programs such as Internet Explorer 8 enable these protections…

CompSec COMPGA01

Nicolas T. Courtois, 2009-201866

Solutions (2)
Automated protections with canaries:

store known data at the end of the buffer. Check.
• StackGuard, ProPolice, PointGuard

= extensions of GCC, automatic.
• similar protections also by default in MsVisual Studio.
Time performance overhead: about +10%.
Is this secure?

– what value should the canary have?
• what if the same C routine is called twice?

CompSec COMPGA01

Nicolas T. Courtois, 2009-201867

Attack Against StackGuard (Canaries)

CompSec COMPGA01

Nicolas T. Courtois, 2009-201868

Solutions (3)
• hire a programmer with extensive understanding of software

attacks
– less attacks, will not eliminate them

Cheaper solutions:
• make sure that stack space is marked as impossible to

execute ()
– DEP = Data Execution Protection.

• Linux PaX (a patch for Linux),
• Supported in Windows XP SP2 too, not widely used yet.

– Requires DEP, requires PAE mode.

• blacklist parts of C language!
– ongoing process.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201869

WX Page Protections - Unix

• CPU has page protection implemented in combination of
hardware / OS kernel
– for each 4K memory page, permission bits specified in page

table entry in kernel: read, write
• Exclusive OR

– Each page should be either writable or executable,
but not both:

W X
– exe program (a.k.a. text) pages: X, not W
– data (stack, heap) pages: W, not X

Remark: In Linux PaX, for older processors, the mechanism of WX is
implemented in a tricky way based on segment limit registers =>
memoryx2, negligible performance degradation.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201870

DEP = Data Execution Prevention - Windows
The “X” idea:

Memory pages MUST be explicitly marked as executable
to be able to execute code.

Windows - Since XP SP2.

Hardware mechanism. Both Intel and AMD implemented it.
– NX bit. Not active by default. Choice dictated by legacy programs…

– Compatibility problems. PAE mode needed.

Can also be enforced purely in software (cf. Linux PaX).

“Backdoors” and Security Paranoia

• Any software could contain a backdoor.
• But can we not “audit” the program?

– we can audit the program source; means close to nothing!
• potentially malicious (or just expoit-able) components:

– critical part: crypto, modify 3 bits, nobody can tell the difference
– compiler is malicious and introduces backdoors?
– compiler side of memory management
– OS side of memory management (e.g. RAM compression attacks)
– CPU microcode updates
– attack can be embedded in SSD firmware
– new frontier: Intel optane RAM

• Defeating the “trusting trust” attack
– Importance of “deterministic builds”: several people build the exe and compare the SHA256(final

exe).
• used a lot in crypto currency.
• example of defence in depth.

• Key paper: Thompson, Ken. "Reflections on trusting trust." Communications of the ACM
27.8 (1984): 761-763.

71

CompSec COMPGA01

Nicolas T. Courtois, 2009-201872

DEP Solves The Problem?
• Only prevents injection of code.

• the ‘return-to-libc’ exploit:
The hacker can overwrite
not with code but with a system
call plus parameters that will contain
the instructions for the shell (!!!).
– System(“command123”)

• Details depend a lot on OS.
– this attack works for simple OS

with monolithic kernel…

– and in many other cases

• Calling the OS functions
by direct jumps is not a secure practice…
– old attack, many changes since…

Stack

return address

saved bottom of stack

local variables
shell code

0x80707050

command123

system()

CompSec COMPGA01

Nicolas T. Courtois, 2009-201873

Gadgets
• Def: a gadget is a part of

legitimate exe which ends with RET.

• x86 instructions are NOT aligned!

CompSec COMPGA01

Nicolas T. Courtois, 2009-201874

Gadgets
• Def: a gadget is a part of

legitimate exe which ends with RET.

• x86 instructions are NOT aligned!

CompSec COMPGA01

Nicolas T. Courtois, 2009-201875

Preventing Attacks on System Calls
details depend a lot on OS…

• Can we prevent the
‘return-to-libc’ exploits

with Windows dlls?

• Answer: In Windows, at boot time
the order and location of system calls
WILL be randomised.

• Lowers considerably the chances
to succeed,
(does not eliminate the attack)

Stack

return address

saved bottom of stack

local variables
shell code

0x80707050

command123

ms*.dll

CompSec COMPGA01

Nicolas T. Courtois, 2009-201876

DEP Solves The Problem?
• Can still jump to some code injected on the heap

• Does not prevent against attacks on the heap… see later slides.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201877

Input Validation

• Application-specific: check if intended length
and format.
– use special encoding for inputs
– use encrypted inputs, check length

• the attack is unlikely to do anything intended?
– If stream cipher, can flip bits to change one character…

• Routines that remove dangerous characters.
– In PHP, using the htmlentities() function.
– In an SQL request, use

mysql_real_escape_string()

CompSec COMPGA01

Nicolas T. Courtois, 2009-201878

C Tips – Replace by

sprintf(buf, …) snprintf(buf, buflen, …),

scanf(“%s”, buf) scanf(“%10s”, buf),

strcpy(buf, input) strncpy(buf, input, 256)

etc…

CompSec COMPGA01

Nicolas T. Courtois, 2009-201879

Solutions (4)
Automated tools working on:
Source code:
These find lots of bugs, but not all.

Ready exe:
• Taintcheck: fix ready exe files…

CompSec COMPGA01

Nicolas T. Courtois, 2009-201880

Solutions (5)
Replacement libraries:
Example: libsafe – dynamically linked library, will

intercept calls to strcpy and check buffer sizes..

StackShield – an assembler file processor for GCC
• keeps backup copies of SFP and RET at the

beginning of local variables,
• compare before exiting the function.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201881

Solutions (6)
Instruction Set Randomization (ISR) – runtime

encryption of CPU instructions… different for each
program, makes code injection impossible.

Heap Overflow Attacks
(about chained lists pointers etc)

CompSec COMPGA01

Nicolas T. Courtois, 2009-201883

Insights
How Memory Management is implemented?
(harder to design a working attack, less standard than

stack attacks…)

Implemented by a compiler through its standard
dynamic libraries, example: msvc*.dll that contain
executable already compiled functions.

Main idea: the design of these memory management routines
can be exploited. How? A bit complex.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201884

Insights
Heap managers have linked lists with

forward/backward pointers, sizes, and
data fields.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201885

What the attacker can do?

A simple buffer overrun (works only forwards):
• can contain code chosen by the attacker. and if

heap is marked NX, pointers to libc functions + parameters in the following
bytes..

• plus extra bytes that will overwrite
the “malloc meta data” for the next 3 blocks

= the prev/next pointers in these blocks,
• overwritten by values chosen by the attacker…

shell code

CompSec COMPGA01

Nicolas T. Courtois, 2009-201886

What the attacker can do?

What happens when the routine freeing
the memory is called?

On this picture, allocations 1 and 2 are
already freed, which maybe happens a
bit later during the same function call…
The next step is to merge these two
free blocks.
Why?

CompSec COMPGA01

Nicolas T. Courtois, 2009-201887

Concatenation after free()
Defragmentation is important:
otherwise allocation of large blocks might fail and the program would

terminate with an out of memory message though there is plenty of
memory left…

This mechanism is typically automatic and sometimes is
also done with a certain delay, but frequently may or
will be called before the current C or C++ function
exits…

hdrnext = hdrnextnext

hdrnextnextprev = hdrnextprev

CompSec COMPGA01

Nicolas T. Courtois, 2009-201888

Insights
In heap attacks none of these addresses will ever be

used as jump address. Seems hopeless?
It is more subtle than that. What we do is to overwrite

a return address elsewhere. On the stack. By
abusing this specific “defragmentation”
method/routine,
when it is called (immediately or later).

The attacker can
control both:

• the address where a certain pointer will be
written automatically by the heap Mgmnt

• the value of this pointer to be overwritten

hdrnext =
hdrnextnext

CompSec COMPGA01

Nicolas T. Courtois, 2009-201889

Insights
Suppose I override these links to point
• hdrnext = to the return address of the

function on the stack.
• hdrnextnext = a pointer to code

(probably just in the buffer I overran)

When the heap manager merges the two
blocks, it will actually overwrite the return
address on the stack with a pointer to code
I control.

This will be called after the current function
exits.

CompSec COMPGA01

Nicolas T. Courtois, 2009-201890

exploit on f

Stack

params of f

return address

saved bottom of stack

local variables increasing
addresses

overwrite

hdrnext =
hdrnextnext

CompSec COMPGA01

Nicolas T. Courtois, 2009-201891

exploit on f

Stack

params of f

return address

saved bottom of stack

local variables increasing
addresses

0x80707050

overrun
buffer on
heap

shell code

