
Access Control
in Unix and Windows

Nicolas T. Courtois
- University College London

Reading

Nicolas T. Courtois, January 2009
2

Unix Security

Chapter 7

Windows Security
Chapter 8

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
3

Our Objectives

Intended Learning Outcomes:

• short glimpse of how Unix and Windows
manage access to files.

Unix:
– Vast topic, not clean, poorly documented, constant mutation…

• Go to hacker conf, inspect source code, run tests...

Windows:
– did NOT publish all the details…

• has a lot of added and useful complexity...

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
4

Beware:

many versions of Unix….

bottom line: Unix is an old primitive and
INADEQUATE operating system

• think about future operating systems…
• how to fix Unix?

• What is missing in our OS?

• Do we trust it?

• Can we add more security like capabilities? Etc…?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
5

*Beware of Hacks

Many things are OMITTED in my course… Technical.

Example: Race conditions, Q:Def?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
6

*Beware of Hacks

Many things are OMITTED in my course… Technical.

Example: Race conditions, real-time hacks:

Exa 1: A privileged program creates a resource and
changes permissions. Can we “freeze” it and make it
chage permission for sth else?

Exa 1b: same by hacking the filesystem or hard drive on the fly?

Exa 3: Scripting/batch/Java/Python:
first invoke tool then load+exec.
Can u replace the script in real time???

there are many ways to
“freeze” e.g. and there are

“system locks” which
means that some higher
privileges than “admin”

must exist…

CompSec COMP0058

Nicolas T. Courtois, January 2009
7

main thing in part 04:

What Reference Monitor Does?

Me process

authorization

access control
at 2 moments!

Subject

Object

resource?

policy

reference
monitor TCB

Reading

Nicolas T. Courtois, January 2009
8

Q&A
any of our “Q”
could be at the exam..

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
9

Basic Principles
Q:

How user privileges are organised and stored?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
10

Basic Principles
Q:

privileges?

They are stored in “user accounts”.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
11

Basic Principles
Q:

In Windows, who decides if I can be logged as Login2?

The LSA = Local Security Authority

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
12

Grant / Remove
Q:

Who can grant / remove user privileges?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
13

Grant / Remove
Q:

Who can grant / remove user privileges?

Any administrator user

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
14

Power
Q:

Who is the most powerful user in an OS?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
15

Power
Q:

Who is the most powerful user in an OS?

Auxiliary questions to meditate:

Q: Can Admin user access any file/dir in Unix?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
16

Power
Q:

the most powerful user?

Auxiliary questions to meditate:

Q: Can Admin user access any file/dir in Unix?

Admin Maybe [UID>=500]. Root most likely [UID=0].

Typically /etc/shadow is readable only by root,
stores passwords, see course part 05!)

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
17

Unix root vs. Windows
In Windows Admin user and System user are very different.

In Unix root is a [super-]super-user with almost no
restrictions… or can go around them.

Example: root can not write a filesystem mounted as read-
only, but can dismount and remount…

A process running as root is NOT
exactly all powerful or almost is:

• process will run at CPU ring 3 = many CPU restrictions,
– cannot access the physical RAM directly,

• CAN do almost everything BUT through system/Kernel calls
– mediated by the system, logged by system (could tamper),

– only in standard ways allowed by the system and prone to system imperfections…

– If there is a “rootkit”, you would not notice… Do we understand the source code? Is compiler compromised? Etc.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
18

Power
Q:

the most powerful user?

Q: Can Admin user access any file/dir in Windows?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
19

Power
Q:

the most powerful user?

Q: Can Admin user access any file/dir in Windows?

W7

not in default
setting…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
20

Power
Q:

the most powerful user in OS?

the ”system” user

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
21

Have You Noticed Something Special?
?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
22

Security Layers

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
23

Security Layers w.r.t.
CPU, RAM, OS

ring 3
virtual memory

more in part03

ring 0
physical memory

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
24

Ownership
Q:

Who can grant / remove permissions on objects/resources?

3+ answers:

• every object will have an owner

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
25

“Ordinary” Rights = rwx
Q:

Who can read / write a file?

9 bits 3 answers:

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
26

“Ordinary” Rights = rwx
Q:

Who can r/w/x a file?

9 bits 3 answers:

• First we have the rights of the owner

-rwx-r-x—-

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
27

“Ordinary” Rights = rwx
Q:

Who can r/w/x a file?

9 bits 3 answers:

• first we have the rights of the owner

• then rights for the owner group

-rwx-r-x—-

user group world

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
28

“Ordinary” Rights = rwx
Q:

Who can r/w/x a file?

9 bits 3 answers:

• first we have the rights of the owner

• then rights for the owner group

• everybody? not recommended, not very secure…

-rwx-r-x—-

user group world

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
29

“Ordinary” Rights = rwx
Q:

Who can r/w/x a file?

9 bits 3 answers:

• every object will have an owner

• and also an owner group

• everybody? not recommended, not very secure…

-rwx-r-x—-

user group world

Q: can we have “worse” or
“less secure”

than everybody???

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
30

“Ordinary” Rights = rwx
Q:

Who can r/w/x a file?

9 bits 3 answers:

• every object will have an owner

• and also an owner group

• everybody? not recommended, not very secure…
– does NOT have to mean a user with an account…

– DANGER: a remote user with no account…
• Later about:

– older WinXP…: ANONYMOUS LOGON

– Unix: world-writable files in web servers

-rwx-r-x—-

user group world

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
31

“World-writable?”
Q: meaning????

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
32

“World-writable?”
Means every user can write it…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
33

World-writable directories?

Widely used for public_html directory

Allows the web server to CD and create new files etc…

It is like the web server is NOT trusted,
it could be abused by malicious people out there…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
34

Inadequate
Our operating systems are NOT OK. Inability to to tell apart.

They lack a crucial distinction between […many possibilities…]
• a user with a local account indeed,

• a user with a remote account like say on a corporate network which we
have joined an which we trust

• user with Microsoft Google Apple etc] authenticated but not trusted

• local actions of an authenticated web server which runs code on our
machine [trusted to be done by a well identified business identity which
you do or must trust] or local actions done by an anit-virus

• actions by a remote web site or remote user not authenticated in any
way

• actions by a user which is authenticated but protected for anonymity

• etc…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
35

Administrative Rights
Q:

Who can grant / remove permissions on objects/resources?

3+ answers:

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
36

Administrative Rights
Q:

Who can grant / remove permissions on objects/resources?

3+ answers:

• every object will have an owner

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
37

Administrative Rights
Q:

Who can grant / remove permissions on objects/resources?

3+ answers:

• every object will have an owner

• and also an owner group
– Yes, also in Windows, see “group SID” later….

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
38

Resources
Q:

Who can grant / remove permissions on objects/resources?

3+ answers:

• every object will have an owner

• and also an owner group
– Yes, also in Windows, see “group SID” later….

• admin user??

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
39

Resources
Q:

Who can grant / remove permissions on objects/resources?

3+ answers:

• every object will have an owner

• and also an owner group
– Yes, also in Windows, see “SID group” later….

• admin user?? - probably, depends on OS…

• the ”system”/Unix root user!

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
40

Hidden Powers
Question:

Who is more powerful than ”system” user?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
41

Hidden Powers
Question:

Who is more powerful than ”system” user?

The hardware
CPU+chipset/motherboard+RAM…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
42

Resources
Q:

Who can grant / remove permissions on objects/resources?

3+ answers:

• every object will have an owner

• and typically also an owner group
– Yes, also in Windows, see “SID group” later….

• admin user?? - probably, depends on OS…

• the ”system”/Unix root user!

• possibly a hardware hack?!

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
43

Resources
Q:

Who can grant / remove permissions?

3+ answers:

• every object will have an owner

• and typically also an owner group
– Yes, also in Windows, see “SID group” later….

• admin user?? - probably, depends on OS…

• the ”system”/Unix root user!

• possibly a hardware hack?!

• rootkit which puts the whole OS “in jail”?! FEASIBLE???

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
44

Ref. Monitor
Q:

On what basis it decides whether to grant / deny access?

?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
45

Ref. Monitor
Q:

On what basis it decides whether to grant / deny access?

• User identity and privileges - stored in user profiles

• Process identity and privileges – real time (see effective uid)

?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
46

Ref. Monitor
Q:

On what basis it decides whether to grant / deny access?

• User+Group identity and privileges - stored in user profiles

• Process identity and privileges – real time (see effective uid)

• Objects permissions: stored with the object,
– ACL is the most common method (Windows and Unix).

?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
47

Unix Access Control

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
48

Unix vs. Windows

The file system is a central object in Unix,

much more than in Windows:

– in Unix, files are not only files but also an abstraction for
most other system resources (e.g. devices).

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
49

Ownership and Groups

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
50

Users in Linux (and many other Unix)

A user is identified by a User ID (UID)
= non-negative

• UID=0 == root

• 32 bits

• Low numbers <500 or 1000 reserved for programs and services,

• Human users usually start at 500 or 1000.

• the file /etc/passwd contains the login name for this UID

A group is identified by a Group ID (GID)
= non-negative int

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
51

Process Ownership

In Unix each process has 3[or 4] user IDs:

• Real User ID == ruid,

– identifies the “Owner of this process”

• user who has created the process,

• or inherited from father process
• does not matter a lot except f you want to change the effective user ID of an

already running process, the kernel looks at the real user ID as well as the
effective user ID

• Effective User ID == euid,

– determines current access rights

• Saved User ID == suid,

– the previous one, used to store the UID when dropping
the privileges, and to restore it later.

“admin
part”

“daily
practice”

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
52

File Ownership

Change with chown

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
53

How To Determine Them (from the inside)

• Real User ID == ruid, == the owner

– the process itself can get it through getuid()
system call

• Effective User ID == euid, == current rights

– read it by geteuid() system call

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
54

Groups

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
55

Groups - Users
A user can belong to many groups.

But at a given moment one is active. Change with
chgrp

Intended usage:

• One unique primary group:
– like “Bob” belongs to group “lecturers”.

• Member of other groups in order to:
– This allows to implement various sorts of file privileges,

that the process or a user can acquire and drop, making
it harder to attack (the user / programmer is somewhat
helped or forced to paying attention to security), the
group must be “activated”.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
56

Special “System Groups”
Special groups with gid<100

which partition the space of privileges…

Can be used to limit certain resources to a particular set of
users.

User ‘root’ will be a member of many system groups

Examples:

• in Mac OS the primary group for root is wheel.

• www = the group that runs the Apache web server
processes.

• mysql = the group that runs the MySQL database
server processes

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
57

Groups - Files

important limitation of most UNIX systems…

• a file will be a member of ONLY ONE group.

• a process can at one moment be a member of
ONLY ONE group.

– (needed to set gid of files it creates!)

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
58

Unix File Permissions

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
59

Unix File System -

first letter

ls -l => -rwx-r-x—-

- file

d directory

l soft link

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
60

Unix File System -

the famous “9 bits”:

ls -l => -rwx-r-x—-

user group world

What’s inside each group?

A={read,write,exec}.

Octal: r=4 w=2 e=1, e.g. 775.

==other
==everybody
with an account

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
61

Changing Permissions

Q1: what is the command for changing permissions
on Unix?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
62

Changing Permissions

Q1: what is the command for changing permissions
on Unix? We use chmod,

Q2: who has the right to do it?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
63

Changing Permissions

Q1: what is the command for changing permissions
on Unix? We use chmod,

Q2: who has the right to do it?

Answer: the owner and root.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
64

When rwx Means Something Special

A={read,write,exec}.

1. For directories, already quite special:

– read – means list files, (does NOT mean you can read files)

– write – means add/remove files and subdirs

– exe (also called ‘search’) – means one can CD to that
dir, and traverse a directory to access subdirectories.

Notes:
In order to read any file you MUST have ‘exe’ access to ALL directories on the

path starting from the root directory /.

X not R for a directory will allow already to read files with known names which are R

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
65

rwx for a Process

– read – receive signals

– write – send signals

– exe –execute as a sub-process

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
66

Seen that?

-r-sr-sr-T

setuid,setgid,sticky bit

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
67

General idea:

By default an executable acts as the person who calls
it and as the group of this person.
Except if:

setuid = can act as another user

setgid = can act as another group

sticky bit = related to “world”: about sharing…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
68

Invocation

By default, programs run with the permissions of
their caller.

Related question:

Q: why the current directory "."
isn't in UNIX PATH by default?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
69

Invocation

By default, programs run with the permissions of
their caller.

Related question:

Q: why the current directory "."
isn't in UNIX PATH by default?

A: If one could fool a system process running as root
into calling your program system(“hack.exe”),
hack.exe will be running with root privileges!

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
70

setuid permission

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
71

setuid

ls -l => -r-sr-sr-x

Occurs for exe files.

For user part: setuid permission/privilege..

For owner group: setgid permission.
Occurs for exe files and dirs.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
72

What is setuid permission?
This process has the access rights of the owner of the file (owner on the disk),

even if another user is running the process (the caller <> the owner).

The program starts with Effective User ID == euid, which can be high, for
example root, and can be changed during the execution
(more about this later).

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
73

Unix Password Storage

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
74

Password Storage in Linux

• Old old times:
in /etc/passwd, readable by all.

• Now:

in /etc/shadow, read-protected file, only
accessible to passwd program and only to
user=root.

How this is implemented?
Using this setuid permission!

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
75

setuid permission
access rights of the owner!

Example:

-r-sr-sr-x 3 root sys 28144 Jun 17 12:02 /usr/bin/passwd
(it is an executable file)

s makes (indirectly) that it can change the protected password file, a file that
ordinary users cannot even read in most current Unix systems (owner=root
can).

Technically, here the

1. Effective User ID == euid, will be root when you start the program

2. And can be changed later… (happily, more about this later)

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
76

Q: From 2012 Exam

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
77

Q: From 2012 Exam

A program run by a person who is not root,
but is a member of the group ’shadow’ can read this file,
but cannot write it.

So he can run a dictionary attack (see slides part 05!!!).

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
78

**for directories

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
79

*Setuid / setgid for directories:

Special meaning,
- DISABLER not enabler

Any user who has write and execute permissions in the directory
can create a file there.

However, the file belongs to the user/group that owns the directory,
not to the creator user / group.

Makes these directories more protected, “more secure”.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
80

Exercise

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
81

Exercise

Q: Which files alice can write?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
82

Exercise

Q: Which files alice can write?

Q: Which information is missing?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
83

Exercise

Q: Which files alice can write?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
84

Exercise

Q: Which files alice can write?

setup; sourcg; hosts;

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
85

Exercise

Q: alice executes gtool.
Can it execute ‘hosts’?

Step by step.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
86

Exercise

Q: alice executes gtool.
Can she?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
87

Exercise

Q: which files can gtool execute, run by alice?

Q: ruid=____ euid=____ for gtool?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
88

Exercise

Q: which files can gtool execute, run by alice?

A: ruid=alice euid=dave due setuid perm. for gtool!

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
89

Exercise

Q: which files can gtool execute, run by alice?

A: ruid=alice euid=dave due setuid perm. for gtool!
Q: Can gtool execute ‘hosts’?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
90

Exercise

Q: which files can gtool execute, run by alice?

A: ruid=alice euid=dave due setuid perm. for gtool!
Q: Can gtool execute ‘hosts’?

Q: Which information is missing?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
91

Exercise

Q: which files can gtool execute, run by alice?

A: ruid=alice euid=dave due setuid perm. for gtool!
A: gtool can execute:

A: setup; gtool; AND NOT hosts!; ARE WE SURE?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
92

Must Also Check GID!

Q: which files can gtool execute, run by alice?

A: ruid=alice euid=dave due setuid perm. for gtool!

A: rgid=____ egid=___ for gtool!

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
93

Must Also Check GID!

Q: which files can gtool execute, run by alice?

A: ruid=alice euid=dave due setuid perm. for gtool!

A: rgid=alice egid=alice

A: setup; gtool; AND NOT hosts!;

because alice’s primary group is alice

AND there is NO setgid privilege for gtool!

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
94

Exercise

Q: which files can gtool execute, run by alice?

A: ruid=alice euid=dave due setuid perm. for gtool!
A: gtool can execute: (alice primary group: alice!)

setup; gtool; AND NOT hosts!;

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
95

sticky bit

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
96

What about this one?

In last group now:

ls -l => drwxrwxrwt

Occurs for directories

called “sticky bit”

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
97

Extra Features of Unix
The famous sticky bit = save text image bit.

Example:

drwxrwxrwt 104 bin bin 14336 Jun 7 00:59 /tmp

Replaces the last “other” x. Means last x is present.

Capital T means last x is absent.

Usage: can be set using chmod +t command or chmod 1XXX.

It is peculiar and very useful feature.

Again not the same in every version of Unix.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
98

Sticky bit for Directories

If it is 1:

“MAKES FILES STICK TO YOU”

Makes it harder to remove or rename files in this dir.

Even if the directory is world writable (everybody can create
files), still

• only the owner of the file,

• or owner of the directory,

• or root

• [frequently also a superuser]

can remove or rename files contained in the directory.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
99

Sticky bit for Directories
Application:

Typically used for /tmp directory.

Writable by all,
yet people can only remove or rename their own files.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
100

Why Do We Have So Many UIDs?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
101

Process Ownership

In Unix each process has

• Real User ID == ruid, identifies the owner

• Effective User ID == euid, determines current
access rights

• Saved User ID == suid,

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
102

Why?

Because it allows one to implement security much
closer to the least privilege principle… as we will
see.

Though the Unix security seems simple and clear on the first day,
it is neither simple, nor very easy to understand.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
103

Because:
The Effective User ID can be both higher and lower than Real

User ID. (both can be arbitrary)

Why it would be higher?

• This Allows Dropping of Privileges as we will see.

• A program can start in such a privileged (for now) state.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
104

Can A Process be More Privileged than the User that Calls It?

YES!

• Happens all the time.

• History:
in 1973 Denis Ritchie @ Bell Labs
have patented this mechanism!

Example of application:

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
105

Install Programs

Example:
click on SETUP.exe for an anti-virus software.

This will install a system-level driver (a system service)
which is a very highly privileged piece of software.

• An escalation of privileges clearly occurs here.

• In Vista, if the name contains setup or install, the process already acquires many administrator privileges.

• you may need a digital signature from Microsoft to install such a sensitive system driver…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
106

Another Important Example
Old example:

sendmail 8.10.1 program:

• when you run the sendmail program,
executed by a non-root user, it has:

– ruid=user, euid=root, suid=root.

– this allowed the program to write to the mail queue.

OK, but isn’t it very dangerous to have root privileges?

Yes, and once its write access to the mail queue is open, it can
permanently drop the euid=root privilege.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
107

set-uid programs

Definition:

A “set-uid program”
(property acquired @ creation and installation)

is the program that assumes the identity of the owner
of the program, and runs as the owner,
even though a different user uses it.

Examples:

• passwd

• su, sudo

BTW: if copied to a “user” directory, it stops
working! (set-uid/gid programs are usually
FORBIDDEN in home directories,
no legitimate reason to have any!)

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
108

setuid system call
Inside the program source code.

General rule:

setuid(integer):

– IF euid == 0,
• one can set effective UID to any value

– IF euid <> 0,
• one can only set effective UID to ruid or suid

A set-uid program can drop root privileges by calling
setuid(getuid()), which sets all three user IDs to the
non-root user ID. Should be PERMAMENT.
Except in older Unix versions…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
109

Troubles with Sendmail

(history of Unix OS)

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
110

Dropping Privileges in Unix

sendmail 8.10.1
• when you run the program, executed by a non-root user has:

– ruid=user, euid=root, suid=root.

– this allowed the program to write to the mail queue.

• however, before users can request anything, the
program permanently? dropped root privileges by
calling setuid(getuid()), which sets all three user IDs
to the non-root user ID.

– Except with Linux Kernel <2.2.16.

– it was NOT permanent, just did not work (bug)

– it was possible later to become root again by “restoring” the saved uid (suid)…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
111

Trouble: setuid()
• Different behaviour depending if euid=0 or not (!).

• Inconsistent behaviour in different versions of Unix.

• Sometimes man pages gave the wrong answer…

• Many attacks on Linux and Solaris in the past…
– more secure in FreeBSD.

Conclusion:
NEVER use the ambiguous setuid(.),

Instead:

CompSec COMP0058

Nicolas T. Courtois, October 2009
112

**Trouble…

This one is for Linux 2.4.18. [cf. Setuid Demystified, Chen-Dean-Wagner]

Legend: 0 indicates root, 1 indicates a positive value 0

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
113

Correct Ways To Drop Privileges in Unix
1. Permanent: changing all the three UIDs.
– setresuid(. . .) is used to set all the three ids.

• works if the process has appropriate privileges,

• all 3 or nothing changed, clear-cut behaviour

• use –1 at one param. to keep one of these unchanged.

2. Temporary - operational
– can be later restored from saved uid

– just set the effective uid by seteuid(.)
• changes the “operational” one: euid.

No need to ever use the dangerous setuid(.) .

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
114

Extra Security Features in Unix

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
115

File Systems ext2 and ext3
Have very important extra security functionalities

-works only if a file is stored on a volume using ext2 or ext3.

Two important bits:

• Immutable - the file can never be changed.
– However root is able to reset this parameter.

• Append-only - equivalent of a Write Once Read Many times
mechanism.
– For log files etc.

Useful commands are: lsattr and chattr.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
116

AC in Unix – Is It Good?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
117

Is It Excellent?
Not really:

• Access control is by user ID,

– users don’t want to give all their privileges to programs they run!

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
118

Is It Excellent?
Not really:

• Access control is by user ID,

– users don’t want to give all their privileges to programs they run!

• Software bugs do break some defences, and there never was enough
defences in the system (many more layers would be needed).

– More human ingenuity goes into attacks than into defences…

– Attacks and malware are not local and propagate worldwide.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
119

Is It Excellent?
Not really:

• Access control is by user ID,

– users don’t want to give all their privileges to programs they run!

• Software bugs do break some defences, and there never was enough
defences in the system (many more layers would be needed).

– More human ingenuity goes into attacks than into defences…

– Attacks and malware are not local and propagate worldwide.

• All powerful root. Too dangerous.

Unix is by no means a reference w.r.t. security.
Both Linux and Windows remain in fact rather underdeveloped…

• Who will pay for fixing / improving it?

• Who will take tough decisions that in the short run will be painful?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
120

Fixing Unix - Ideas

• ?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
121

Fixing Unix - Ideas

• Virtualization/confinement

• Breaking up the power of root

• Adding some MAC controls to remove many
existing privileges and have much finer granularity.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
122

root privileges
called capabilities

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
123

Breaking Up the root

All powerful root is too dangerous.

– 31 different capabilities are defined in
capability.h in Linux kernel 2.6.11.

– it would be better to manage these separately…
• and drop some capabilities at system boot already,

• the future?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
124

Windows File Access

Cf. Chapter 8

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
125

History
Initially Microsoft OS were not designed for multi-user

environments.

• lack of OS support

• lack of file system support.

Windows NT, 2000, XP and Better

At the end

• OS support: becomes MUCH MORE complex than Unix,

• All these features require the NTFS file system.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
126

DOS, old MACs
There was nothing except “read-only” or “protected”

attribute (1 bit).

In great simplification…

Windows 95, 98
FAT32 system.

• Attributes: read-only, hidden, system, archive.

• not multi-user, no user permissions…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
127

NT, XP, Vista, W7
All depends if your OS supports NTFS,

NTFS allows compression and encryption of individual files.

Q: How to lose access to encrypted files forever?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
128

NT, XP, Vista, W7

Q: How to lose access to encrypted files forever?

• forget the password

• + delete the account
– so that the password cannot even be cracked anymore

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
129

Windows Access Control

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
130

Windows NT, 2000, XP etc.
Windows was developed in C++.

Object oriented programming.

An object has attributes and methods.

Objects can be “securable” (or not).

Most objects are “securable”:

• files,

• processes,

• threads,

• named pipes,

• shared memory areas,

• registry entries

• etc.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
131

Security Descriptors

Every “securable” object has a security descriptor.

=> The Microsoft equivalent of the 9-bit wrx_rx___x string
+ much more.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
132

Access Control in Windows

user

(subject)

granted at logon and
passed to a process

“like euid”

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
133

Revision:
Q:

who makes logon decisions?

The LSA =

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
134

Revision:
Q:

who makes logon decisions?

The LSA = Local Security Authority compare: Shadow group in our exercise

invokes

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
135

Accounts
Q:

who maintains the user accounts database?

The SAM =

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
136

Accounts
Q:

who maintains the user accounts database?

The SAM =
Security Account Manager

“visible” data for apps

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
137

Hidden Data?
Like Encrypted/Hashed Passwords?

Q:

Unix: /etc/shadow

Windows: ??????????????????

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
138

Windows Password Storage

The SAM file

Unix: /etc/shadow

Windows XP: C:\Windows\System32\config\SAM

At all times Win Kernel keeps an exclusive filesystem lock on
this file, one cannot read it…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
139

MUCH more complex than is Unix…
Less power to “admin”. More security at system levels (more privileged than admin).

Let’s just study the very basic key elements involved in
Windows Access Control Lists = ACL’s.

Access Control in Windows

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
140

Subjects
In Windows NT, subjects, that can operate on objects can be:

• users,

• groups,

– example: “Authenticated Users” as opposed to “Anonymous Users”.

• “logon sessions”, confused and complicated concept.

– for example ANONYMOUS LOGON. occur with remote logon
• allow a remote machine to act as a secondary graphical "terminal" to a Windows NT.

Historically hackers used a lot of anonymous logon sessions to hack
windows: many version of Windows allow to enumerate user accounts to
a remote user which is anonymous…

For a long time group Everyone included ANONYMOUS LOGON, since XP
SP2 it doesn’t and ANONYMOUS LOGON unless explicitly added.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
141

Windows vs. Unix

SID GID

UID

logon session

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
142

SIDs
In Windows NT, subjects, that can operate on objects can be:

• users,

• groups,

• “logon sessions”

Have each a unique SID = Security Identifier.

• Example: "S-1-5-21-XXXXXXXXX..

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
143

*Nested Groups?
In Windows a group is a collection of SIDs.

Two sorts:

• local group = a.k.a. alias, managed by LSA.
– similar to UNIX:

• can be used to grant access to resources

• can NOT be nested

• global group – managed by domain controller
== another computer

– CAN be nested!!!!

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
144

Question for 1$:
relates to ACLs and file access control:

Q: Why windows computers using a workgroup to share files
are potentially less secure than using a domain?

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
145

Question for 1$:

Q: Why windows computers using a workgroup to share files
are potentially less secure than using a domain?

Many problems,

• lack of user authentication, trusted machines

• quite technical:
– if the user, or a group on a second computer has the same SID

(because the machine SID is the same for example), which can
happen, then an access can be mistakenly granted by the system (!)

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
146

Windows has

• Discretionary Access Control Lists = DACL.

• System Access Control Lists = SACL.

Each DACL is a collection of Access Control
Elements = ACE.

DAC and ACL in Windows

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
147

For each (subject, object) we have various privileges
divided into three groups, see winnt.h:

• generic:

– read, write, execute

• standard:

– delete,

– read_control (right to read the security descriptor),

– synchronize (right to wait for some signal from the object),

– write_dac (right to change the DACL),

– write_owner (right to change the object’s owner);

• SACL: system privileges

ACE - Elements

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
148

Microsoft has several special attributes that
exist only for directories:

• open,

• create_child,

• delete_child,

• list,

• read_prop,

• write_prop,

ACE - Directories

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
149

The Windows Equivalent of euid change with setuid()?

Windows have the concept of impersonation token (a
second token).

Threads can have three access tokens:

• the primary access token (e.g. from parent process)

• the impersonation access token that contains the security
context of a different user, can contain more privileges.

• a saved access token = like suid.

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
150

**The Windows Equivalent of set-uid privilege?

SE_IMPERSONATE_NAME in SACL

User Right: Impersonate a client after authentication.

A server program can run with an access token of the logged
on user and calls two functions

– ImpersonateLoggedOnUser
– RevertToSelf – uses the saved access token…

CompSec COMP0058

Nicolas T. Courtois, 2012-2018
151

Inheritance
In Windows NT, permissions propagate through inheritance.

Application:

1. for all sub-directories

2. for all sub-keys in the registry

Automatic propagation since Windows 2000, not in NT.

