Computer Security Tutorials

Computer Security COMPGA01

Nicolas T. Courtois, November 2011

Answers to be filled in directly with a pen, solutions are given in class. The question numbers are of the form X.Y where X corresponds to the numbering of pdf slides. Many questions are the same as in previous exam or homework.

Question 2.1.

Question	Answer
Explain what is a <i>secu</i> -	A security policy is a short, succinct state-
rity policy.	ment. It is written at a high-level and de-
	scribes what is and what is not allowed.
A security mechanism	A mechanism by which a security policy
(in this context).	can be implemented or enforced.
What is a reference	A reference monitor is a (most of the time
monitor?	a software) module that controls all soft-
	ware access to data objects, files, devices,
	I/O ports etc.
State the three main	It should be i) tamper-proof, ii) always-
properties it should	invoked = non-bypassable (complete me-
satisfy.	diation), and iii) simple (economical +
	small enough to be build in a rigorous way,
	and fully tested and analysed).
Explain DAC and	Discretionary Access Control : people
MAC. Which one is	to grant rights at their Discretion. In
more vulnerable to	practice users grant their privileges to
malware?	programs they run, and these privileges
	will be substantial and exploited by Tro-
	jans. Mandatory Access Control rules are
	mandatory, and simply forbid certain op-
	erations or certain information flows, lim-
	iting damage from malware.
Explain briefly the Chi-	It defines "conflict of interest classes". If
nese wall model in	two firms, say Pepsi and Coca-Cola are in
terms of classes, in-	the same "conflict of interest class" all po-
tormation flows, transi-	tential information flows that (through
tive closure in directed	transitivity) can potentially (a strict pol-
graphs.	icy) occur and lead to data flowing from
	one of these firms to another, will be pre-
	vented.

Question 2.2.

Question	Answer	
What is an order re-	Order relation: A set A , relation	
lation in mathematics?	R Reflexive, Antisymmetric, Tran-	
What are the R A T ax-	sitive. $\forall \in A$ aRa, etc	
ioms?		
What is a POSET?	A poset (Partially Ordered SET) is	
	a set with an order relation. GLB	
	= Greatest Lower Bound, a.k.a.	
	Inf. Defined as the greatest ele-	
	ment dominated by the arguments.	
What is the dual no-	GLB = Greatest Lower Bound,	
tion for LUB? Alterna-	a.k.a. Inf or Meet or Wedge \wedge .	
tive names?		
Exact mathematical	Defined as the greatest element	
definition?	dominated by the arguments.	
	$GLB(a,b) = Max_{\leq} \{x \in A x \leq $	
	$a \text{ AND } x \leq B \}$	
In $< \mathbb{N}, >$, what is the	This relation is transitive, so its	
transitive closure of $?$	transitive closure is itself, the re-	
	lation .	
Given a set of classi-	The Bell LaPadula product lattice	
fications H with a to-	is defined as a poset $H \times C$, \leq where	
tal ordering \leq_H , and a	\leq is defined by:	
lattice $C = P(Cat), \subseteq$		_
where Cat is any set	$(l_1, c_1) \leq (l_2, c_2) \iff l_1 \leq_H l_2 \land c_1 \in$	$= c_2$
of "categories", write a		
definition of the Bell-		
LaPadula product lat-		
tice.		

Question 2.3. Consider the set of confidentiality levels

$$L = \{PUB < OFF < SEC\},\$$

and the set of categories

$$Cat = \{Production(P), HumanRessources(H), Finance(F)\}.$$

We consider four objects o_1, o_2, o_3, o_4 and two subjects s, t with the following clearance levels:

$$\lambda(o_{1}) = (PUB, \{P\}) \\ \lambda(o_{2}) = (PUB, \{\}) \\ \lambda(o_{3}) = (OFF, \{H, P\}) \\ \lambda(o_{4}) = (SEC, \{P\}) \\ \lambda(s) = (OFF, \{H, F, P\}) \\ \lambda(t) = (SEC, \{P\})$$

Answer the following questions in the Bell LaPadula model:

Question	Answer
Count security classes in	$3 \cdot 2^3 = 24$
this classification lattice.	
The Bottom element $\perp =$	$(PUB, \{\})$
The Top element $\top =$.	$(SEC, \{P, H, F\})$
$LUB(\lambda(o_1),\lambda(o_4)) =$	$(SEC, \{P\})$
which users can read both	t
o_1 and o_4 ?	
$\operatorname{GLB}(\lambda(o_1)), \lambda(o_3)) =$	$(PUB, \{P\})$
which users can write both	both if connected as
o_1 and o_3	$(PUB, \{P\})$
$LUB(\lambda(s)), \lambda(t)) =$	$(SEC, \{P, H, F\}) = \top$
which object can be written	none
by both s, t	
$\operatorname{GLB}(\lambda(s)), \lambda(t)) =$	$(OFF, \{P\})$
which objects can be read	o_1, o_2
by both s, t	
Which objects s can read.	o_1, o_2, o_3
Which objects t can write?	04

Question 2.4. Consider the set of integrity levels

$$L = \{UserSpace(US) < System(SH)\}.$$

Consider the following set of categories

$$Cat = \{SensitiveWorkFiles(S), PersonalData(P)\}.$$

Let Bob be a subject and and $\{do1, fi2, pr3\}$ a set of objects with the following classifications.

$$\begin{array}{lll} \lambda(Bob) &=& (SH, \{S\}) \\ \lambda(do1) &=& (US, \{P\}) \\ \lambda(fi2) &=& (SH, \{S\}) \\ \lambda(pr3) &=& (US, \{S\}) \end{array}$$

Fill in the following table working all the way down for each of the 5 policies. Consider that the operations are executed in order, so that potential changes in security levels λ can affect further operations.

We recall that LWM = Low Water Mark policy. In the strict Biba and in the Ring policy current levels never change. In the Integrity Audit policy all operations are permitted and only changes in λ need to be recorded.

For each operation (working column by column) do explain whether the operation will be allowed (Y) or denied (N). Note any potential changes (if any) to the security classes: write a new value of $\lambda(x)$ each time it is changed. If it does not change, there is no need to write it.

policy ⊳	Biba strict	LWM	for Objects	LWM	for Subjects	Integr. Audit	Ring
operation	Y/N	Y/N	λ change	Y/N	λ change	λ change	Y/N
read(do1)	N	Ν		Y	$\lambda(Bob) =$	$\lambda(Bob) =$	Y
					$(\mathbf{US}, \{\})$	$(\mathbf{US}, \{\})$	
read(pr3)	N	Ν		Y	$\lambda(Bob) =$	$\lambda(Bob) =$	Y
					$(US, \{\})$	$(US, \{\})$	
write(fi2)	Y	Y	$\lambda(fi2) =$	N		$\lambda(fi2) =$	Y
			$(SH, \{S\})$			$(\mathbf{US}, \{\})$	
write(do1)	N	Y	$\lambda(do1) =$	N		$\lambda(do1) =$	N
			$(\mathbf{US}, \{\})$			$(\mathbf{US}, \{\})$	
write(pr3)	Y	Y	$\lambda(pr3) =$	N		$\lambda(pr3) =$	Y
			$(US, \{S\})$			$(\mathbf{US}, \{\})$	
read(do1)	N	Ν		Y	$\lambda(Bob) =$	$\lambda(Bob) =$	Y
					$(US, \{\})$	$(US, \{\})$	
write(fi2)	Y	Y	$\lambda(fi2) =$	N		$\lambda(fi2) =$	Y
			$(SH, \{S\})$			$(US, \{\})$	
write(do1)	N	Y	$\lambda(do1) =$	N		$\lambda(do1) =$	N
			$(US, \{\})$			$(US, \{\})$	
write(pr3)	Y	Y	$\lambda(pr3) =$	N		$\lambda(pr3) =$	Y
			$(US, \{S\})$			$(US, \{\})$	
read(pr3)	N	N		Y	$\lambda(Bob) =$	$\lambda(Bob) =$	Y
					$(US, \{\})$	$(US, \{\})$	

Question 3.1. Here is a listing of a Unix directory.

Permissions	Owner	Group	Size	Last Update	File Name
-rwsx	dave	gdev	1452306	Nov 03 21h11	gtool
drwxrwxrwt	dave	gdev	1452306	Nov 03 21h11	gdata
-rwxxx	alice	alice	214768	Nov 03 09h36	setup
-rw-r	alice	pcrack	12486	Dec 04 11h00	sourcg
-rw-rr	dave	pcrack	14257	Oct 02 18h44	config
-rwwxr	root	pcrack	176704	Nov 01 12h23	hosts

Suppose that user alice is a member of groups alice and pcrack. User dave is a member of groups dave, pcrack, and gdev. For each question specified in the following table, provide your responses.

Question	Answer
List the names of the files that alice	setup; sourcg; hosts;
can write.	
List the names of the files that dave	sourcg; gtool; config;
can read.	
Suppose that alice executes program	setup; gtool; hosts;
gtool. List the names of the files that	
the corresponding process can exe-	
cute.	
Suppose that dave executes program	gtool; config; hosts;
setup. List the names of the files that	
the corresponding process can write.	
How do we distinguish directories?	First letter d for gdata.
Explain x permission for directories.	Means one can CD to that
	dir, and traverse a directory
	to access subdirectories.
The permissions for good start with -	Setuid permission. Pro-
rws. Explain what does 's' stand for?	gram will have the access
	rights of the owner of the
	file, even if another user is
	running the process. the uid
	can also be changed during
	the execution.
Explain what sticky bit is. when does	Directories only, letter t or
it apply.	T ix x present. Last group.
	Only the owner of the file,
	or owner of the directory, or
	root can remove or rename
	files contained in gdata.

Question 3.2.

Question	Answer
In Unix/Windows, can a	For example a program that is able
process be more privi-	to change your password. It makes
leged than the user who	changes in data files that ordinary
calls it? Give one exam-	users are not able to read. And
ple.	in many systems the administrators
	cannot access the password file either.
Can it be less privileged?	If the owner is less privileged.
One example?	
Explain what is <i>Real User</i>	The Real User Id (ruid) identifies
Id and Effective User Id	the owner of the process, the Effec-
in Unix systems.	tive User Id determines current access
	rights and can change during the ex-
	ecution of the process, for example to
	drop certain privileges.
Explain very briefly how	Each object/file has a security de-
in Windows, a system	scriptor, which a list of Access Con-
knows if a user is al-	trol Elements (ACE) objects. Each
lowed to access a spe-	ACE says that for some user or group
cific file with (Discre-	(or "local system", or another type of
tionary) Access Control	SID = Security Identifier) a certain
Lists (ACL's).	set of rights is allowed.
Explain what a "closed"	Deny by default, and deny overrides
policy is. In Apache	allow. Here it overrides it even when
web servers, explain what	some allow is specified. The current
happens when the .htac-	configuration file with "Deny from
cess file contains the fol-	all" and "Allow from ucl.ac.uk"
lowing 3 lines in order.	will produce a somewhat very strange
Order Allow,Deny	outcome: no one will be able to access
Deny from all	the web site(!). Tricky question.
Allow from cs.ucl.ac.u	k

Question 5.1.

Question	Answer
*Which is bigger $H(X, Y)$	$H(X,Y) \ge H(X)$. Equal if and only
or $H(X)$? When equality is	if Y depends on X
achieved?	
*Which is bigger $H(X, Y)$	$H(X,Y) \le H(X) + H(Y)$. Equality
or $H(X) + H(Y)$? When	if and only if X and Y are indepen-
equality is achieved?	dent.
For a discrete variable with	$H(X) \leq \log_2(n)$. Equality if and only
n outcomes which is bigger	if X is uniform.
$H(X)$ or $log_2(n)$? When	
equality is achieved?	
*Which is bigger $H(X Y)$	$H(X,Y) \ge 0$. Equal if and only if Y
or 0? Equality?	is a function of X
*Which is bigger $H(X Y)$	Always equal. $H(X Y) = H(X,Y) -$
or $H(X, Y) - H(Y)$? When	H(Y).
equality is achieved?	
*Which is bigger $H(X Y)$	$H(X Y) \leq H(X)$. Equality if and
or $H(X)$? When equality is	only if X and Y are independent.
achieved?	
Define Entropy of a pass-	$-\sum_{i=1}^{n} p_i \cdot log_2 p_i$
word with distribution	
$p_1,\ldots,p_n.$	
In which case the entropy	For one single user / target.
measures the strength of a	
password?	
Define Min-entropy of a	$-log_2$ P(most frequent password)
password.	
In which case the Min-	For a large number of users / targets,
entropy measures the	breaking at least one.
strength of a password?	

Question 5.2.

Question	Answer
What is "spoofing" in the	Fake login page.
context of password secu-	
rity?	
What are the three fac-	Now the password becomes also
tors? Why writing the	something we have. Solution: write
password down defeats a 2-	some part of the password.
factor system without nec-	
essarily making it less se-	
cure? Solutions?	
Give two examples of self-	Make passwords longer \rightarrow users write
defeating security recom-	them down. Change passwords \rightarrow
mendations regarding pass-	users worry more not to remember
words.	them and make them less secure.
Can passwords be possibly	No, the key should be different for
stored encrypted by a deter-	each user.
ministic block cipher algo-	
rithm with a fixed key?	
What is the encryption	Yes, it will work. No attack.
AND the storage is imple-	
mented in a secure hard-	
ware?	
How to use a hash function	Store $H($ name, salt, machine ID,
to store a password?	password), salt