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‘ Road map '

¢ Cryptography and Multivariate Cryptography

$ Quadratic Equations and MQ problem

> Hidden Field Equations (HFE) and HFE problem

& Attacks on HFE

< MinRank problem

& Attacks on MinRank

< Applications of HFE : Short signatures

< Applications of MinRank : Zero-knowledge authentication
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‘ Why cryptography is becoming important in our societies '

Freedom — oo = Security — 0

The goal of cryptography : Add security to the information

technologies that are by nature insecure.
{ Privacy, Anonymity.
> Authenticity, Integrity, Non-repudiation

> Fair play and robustness in multiparty protocols.

‘ Main tool '

Main tool to protect information : the secret (secrecy).
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‘ Evolution of protections. '

> Protections that are secret : E.g. Enigma, DVD.
> Based on a secret key : E.g. DES, AES.

> Private-public key solutions : E.g. PKI certificates.

‘ Public key cryptography '

a.k.a Asymmetric or Private-public key cryptography.

No private or secure channel, prior transmission of

an authentic public key.
> Public key encryption : Privacy
¢ (Public key) Authentication.

¢ Digital signatures : Authenticity + Non-repudiation.
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‘ Multivariate and univariate P.K. cryptography '

Main stream PK-cryptography :

¢ 1970s.. Univariate equations, mostly exponentiation
over finite fields or rings. Subexponential algorithms =- huge

blocks (1024 bits).
< 1986.. Bivariate equations of algebraic curves.

Exponential, v/exh. search. Blocks of about (160 bits).

Multivariate cryptography :

< 1970s : McEliece and knapsacks, 1980s-90s Many schemes
proposed in several countries, many broken

1996 : invention of HFE.

Multivariate equations over finite fields.

Goal to achieve : O(exh. search). Small blocks ~ 80bits.
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‘ Multivariate cryptography cont?. I

A. Algebraic schemes : algebraic trapdoor embedded in a basic

one-way primitive in an indistinguishable way.

1. Linear branch.
{ EC codes : McEliece, Niederreiter, SD.
> Rank-distance codes : GPT, Chen, MinRank.

Quadratic branch.

¢ Multivariate Quadratic equations (MQ) :
Matsumoto-Imai (C*), D*, [C] (HM), HFE, HFEv-, TPM ,
TTM, Flash, Sflash, Quartz, Shamir’s birational signatures,

etc..
B. Combinatorial schemes : combinatorial trapdoor.

3. Combinatorial schemes : PKP, CLE, IP, GI, UOV etc..

4. Combinatorial transformations based on schemes from 1 or 2 :
HFEv, HFE-, HFEv-, GPT with right scrambler, C*— etc.
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‘ Modern cryptography '

Given a cryptosystem, a security level is defined by a triple :

1. Adversarial objective (the weakest possible)

2. Adversarial ressources (the strongest possible).

Example 1. Probabilistic Turing machine running in time T'(n)

and working with success probability €(n); n = security parameter.
Example 2. Quantum computer with 1000 binary quantum states
and running in 1 s (Crypto science-fiction).

Access to the system (i.e. initial penetration).
The strongest are usually adaptive attacks from inside.

Given a cryptosystem and a security level, we may have
proofs, reductions, arguments or beliefs

that determine the confidence level in this security level.
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‘ Security notions in multivariate cryptography '

Multivariate cryptography attempts to achieve the strongest security

definitions known for each respective application :

1. Adversarial goal.
¢ PK encryption : Distinguishability (Semantic security) :
REACT-HFE [Pointcheval] is a secure encryption function based
on a single one-wayness of HFE (called HFE problem).
¢ PK authentication : Learn something about the Skey.
MinRank scheme is proven Zero-knowledge.
¢ PK signature : Resistance against existential forgery :
Quartz based on HFE, proven for PK-only attacks [2nd Nessie

workshop], conjectured in general (slight modifications).

Adversarial ressources : Asymptotic and concrete security close to

exhaustive search.

Access (initial penetration) : Most general adaptive insider attacks.
Proven for MinRank, conjectured for Quartz.
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Building secure multivariate cryptosystems :

¢ Security reductions / proofs / arguments / or relations.
¢ Study the hardness of the basic problems.

‘ Hierarchy of problems for a trapdoor function '

A trapdoor is embedded in a basic one-way primitive in an

indistinguishable way. Example :

base one-way problem

recover the secret key, computational structural attack

inversion attack faster than for base problem

inversion attack - given vy, find x, y = F(x)

distinguish from a random MQ), decisional problem
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Ericolas Courtois 2003

Yy Ry IY Yy

Attacks known:
B exponential
M sub-exponential Tgmodt
M sub-exponential
M palynamial

Feductions between some difficult

Nicolas T. Courtois 10



Multivariate Cryptography October 2002

‘ Multivariate Quadratic one-way functions '

The MQ problem over a ring K : Find (one) solution to a system

of m quadratic equations with n variables in K.
n n
bk = Z Z )\ijk a;a;
i=0 j=i
with k=1..m, ag=1

‘ MQ - Univariate case : n =1 '

For K = 7y, as hard as factoring N [Rabin].
For K = GF(q), solved in polynomial time [Berlekamp 1967].

‘ MQ - Multivariate case '

NP-hard for any field K [Garey-Johnson, Patarin-Goubin].

Nicolas T. Courtois 11



Multivariate Cryptography October 2002

‘ Solving MQ '

Case m > % : MQ is solved by linearization (folklore) :

— New variables y;; = x;x;.

— At least m linear equations with m variables.

2
Case m = €5~ : MQ is expected to be polynomial in n@Q/ve),

2
First claimed by Shamir and Kipnis at Crypto’99.
Demonstrated by Courtois, Patarin, Shamir and Klimov at Eurocrypt

2000, a better and simpler algorithm :

‘ XL algorithm '

For a given output y € K™ we put

lk: — fk:(xla'°'ax’n) — Yk
The instance to solve is :

li1(x1,...,2n)

lm(wl, « o o ,wn)
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EX tended Liinerization or Multiply(X) and Linearize.

( xq ll
zo lq

\

Eliminate all terms in all but a small number of variables.

Special case of Grobner bases - important part of applied mathematics :
Buchberger algorithm [1965]....F5 by Jean-Charles Faugere.
It is unclear if they give better results in practice that the simple XL.
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‘ The complexity of XL '

Let w be the exponent of Gaussian reduction. 2 < w < 3.

Question : Given n, m, up to what maximum degree D, XL should
be applied 7 Our estimations confirmed simulations :

~ N o~ L
DNMNI_\/g]
2

XL is expected to solve m = en“ equations with n variables in

polynomial time :

WE = T9 a (’)(n%)

‘ Our discovery : When m =n + 1,n + 2, .. '

When m becomes slightly greater than n, XL works much better.

‘ Application to systems with m =~ n '

If ¢ is small, guess some variables and m — n increases !
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‘ FXL algorithm '

Hypothesis : It is enough to fix 4/n variables.

Then FXL is expected to solve a system of n quadratic equations

with n unknowns over GF(q) in subexponential time :

WEF = q\/ﬁnw\/ﬁ

Lack of evidence

In practice, the best known algorithms for solving multivariate
equations over a very small finite field are still close to the

exhaustive search. ‘ HFE Challenge 1 .

We ignore the internal structure of HFE cryptosystem.

The public key is m = 80 quadratic equations with n = 80 variables

over GF(2), g = 2.
WFE = qV'neoVvr =~ 2179

[

FXL exceeds by far the exhaustive search in 289,
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‘ Trapdoors in MQ '

General principles od design :

[Base] A function such that
¢ It is invertible due to some algebraic properties.
¢ Can be re-written as MQ.

[A] Hidden function - a basic (algebraic) version of a trapdoor.
Conceals algebraic structure with invertible affine variable changes
(e.g. basic HFE).

[B] Added perturbations - an extended (combinatorial) version of a

trapdoor function - destroys the algebraic structure by
non-invertible operations (e.g. HFEv-).

Analogous to diffusion / confusion principles [Shannon, Feistel] :
A is linear, global and invertible, B are local perturbations.
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K - finite field K = GF(q), q prime or q¢ = p“

3 a (unique) finite field GF(¢"™) = K[X]/P(X)

with P being a degree n irreducible polynomial over K.
GF(q™) = K™, vector space, dimension n over K :

x € GF(q™) is encoded as (x1,...,xy), n-tuple of coeffs. of a
polynomial from K|[X] modulo P.

‘ Multivariate and univariate representations. '

Every function f: GF(q)" — GF(q)" can be written as :

¢ a univariate polynomial.

& n multivariate polynomials with n variables over K.

Nicolas T. Courtois
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‘ Multivariate and univariate degree. '

If b= f(a) = a? then all the b; = f;(a1,...,an) are K-linear.
If f(a) = Zaqs"'qt then the f; are quadratic.

Example over GF'(2).

b= f(a)=a+a>+a° =
(a2X? 4+ a1X 4+ ao) + (a2 X? + a1 X + a0) + (a2 X? + a1 X +
ap)® mod X3 + X? +1=

(ag+aza1+azap+a1)X?+(azai+aiag+az) X +(ag+az+aiag+azap)

a2 + a2a1 + a2a9 + aj
a2a1 + aijap + a2

ag + a2 + ajap + a2a0
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Hidden Field Equation (HFE).

fla) = Z Vst a?"+e’

q°+q*<d
— Re-write as n multivariate quadratic equations :

fi{ bi = fi(a1,...,an) }

— Conceal the algebraic structure of f :
Apply two affine invertible variable changes S and T..

1=1..n

g=TofoS

s f T
g:r—a—b—y

Nicolas T. Courtois
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‘ Using HFE '

public key : | n quadratic polynomials

g:{ yi:gqj(xl,---,xn) }

1=1..n

private key : | Knowledge of T', S and f.

Since f is bounded degree and univariate, we can invert it :

Several methods for factoring univariate polynomials over a finite
field are known since [Berlekamp 1967]. Shoup’s NTL library.

Quite slow, example n=128, d=25, 0.17s on PIII-500.

‘ Computing ¢~ ! using the private information I

g—1 f_l 7—1
Y Y
S S

b+— vy

X

Qa
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‘ The HFE problem '

A restriction of MQ to the trapdoor function g defined above.

Given

the multivariate representation of g and a random y.

Find

a solution x such that g(x)=y.

It is not about recovering the secret key (problem sHFE # HFE).

‘ Claim '

The HFE problem is necessary and sufficient to achieve secure

encryption and secure signature schemes with basic HFE.

‘ HFE problem # HFE cryptosystem '

basic HFE |- algebraical, 4 subexponential attacks on the trapdoor.

HFE-,

HFEv, .. | combinatorial versions - no attacks known.
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‘ How to recover S and 7. '

If f were known, 3 algo in q"/2 = v/exhaustive search.

the IP problem [Courtois, Goubin, Patarin, Eurocrypt’98].

Remark [Shamir] : f is ‘kmown in 99%’ because d << q" — 1

The weakness of HFE identified [Shamir-Kipnis, Crypto’99].

The homogenous quadratic parts of g (and f) can be written in the
univariate representation and represented by a using a symmetric

matrix G (resp. F) :
g()

rank(G)= supposedly n, and rank(F')=r avec r = logd.

Nicolas T. Courtois 22



Multivariate Cryptography October 2002

?
T 1o g = f oS
Lemma 1 [Shamir-Kipnis| : The matrix representation of f oS is of
the form G/ = WGW?. Same rank r.

Lemma 2 [Shamir-Kipnis] : T~ 1 og = Z;é t,G*F with G**

k
being the public matrix representations of g? .

The attack focuses on finding a transformation 7' such that the
matrix representation of T~1! o g is of small rank. Find such
tr € K™ that

n—1
Rank(z tLG*R) =7
k=0

Recovering the secret key of HFE is reduced to MinRank :
sHFE — MinRank over GF'(q¢™).
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‘ The problem MinRank '

MinRank(n X n,m,r, K)
Given : m matrices n X n over a ring K : My,... M.

Find a linear combination « of M; of rank < r.

Rank(z a;M;) <.

Fact : MinRank is NP-complete [Shallit, Frandsen, Buss 1996].

MinRank can encode any set of multivariate equations.

MinRank contains syndrome decoding, probably exponential.
Also reduction from rank-distance syndrome decoding.

Nicolas T. Courtois
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‘ MinRank attacks '

& First put m := Min(m, nn + 1> — (n+ n)r + 1)
Exceptions : constructed small number of solutions.

& If n < n, transpose all matrices. Now n > n.
{ Brute force attack WF =~ ¢".
¢ Random square MinRank r=xn [Schnorr| Let n = r — s, then

m := Min(m, s*), broken in qs2. Fails for rectangular matrices.

{» Sub-matrices Attack r<n [Coppersmith-Stern-Vaudenay, C’93].
All the sub-matrices (r 4+ 1)x(r + 1) are singular. WF ~ m“".

¢ MinRank — overdefined MQ r<n [Shamir-Kipnis, Crypto’99]
Express the fact that columns » 4+ 1..n are dependent. W F =~ n®"

¢»> The Kernel Attack [Goubin, Asiacrypt 2000] Guess the kernel of
the matrix. The best attack for small q, WF = qf%%

¢ The Big m Attack m>n [Courtois], WF = qMa“"(O’"(”_T)_m).

¢»> The Syndrome Attack m>n [Gabidulin, Courtois]. Uses

syndromes and linearity. W F' = qMax(T,(n%-n)r/Q—m—r /4)

= All attacks are exponential
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‘ MinRank attacks on HFE in practice '

Reference point : 80-bit trapdoor HFE Challenge 1.

Solving this MinRank using :

& All the attacks with ¢%t" fail as here ¢ = 280.

¢ MinRank — overdefined MQ [Shamir-Kipnis, Crypto’99]

n(n — r) quadratic equations with r(n — r) variables over
GF(23Y), solve by XL.

2152

¢ Use Sub-matrices Attack [Courtois RSA 2001]
297

<> Worse than the exhaustive search on the underlying HFE
280
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‘ Do we need to recover the secret key 7 '

Some cryptanalyses of multivariate schemes :

. For some the secret key is computed :
— D* [Courtois 97].
— ‘Balanced Oil and Vinegar’ [Kipnis, Shamir Crypto’98]

— HFE [Kipnis, Shamir Crypto’99].

. In many cases the attack does not compute the secret key :
Matsumoto and Imai C* and [C] schemes [Patarin]
Shamir birational signat. [Coppersmith, Stern, Vaudenay]
D*, L. Dragon, S-boxes, C*~ [Patarin, Goubin, Courtois]
Equational attacks on HFE [Courtois]
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What characterizes functions g that can(not) be inverted ?

¢ Symmetric cryptography - there should be no simple way to

relate x and g(z) with some equations [Shannon’s thoughts]

Idea of unpredictability, pseudorandomness.

¢ Asymmetric cryptography - usually explicit equations g(x).
The pseudorandomness paradigm can hardly be applied.

Every deterministic attack can be seen as a series of transformations
that start with some complex and implicit equations G(x;) = 0.
It gives at the end some equations that are explicit and simple,
e.g. z; =0 ou 1.

Definition [very informal] : | One-way function in PKC

All ‘basic’ combinations of given equations do not give equations
that are explicit or ‘simpler’.
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We denote by G; the expressions in the x; of public equations of g
s.t. the equations to solve are G; = 0.

We can generate other (multivariate) equations (true for x) by low
degree combination of the GG; and the z;.

We require that such ‘trivial’ combinations of public equations

remain ‘trivial’

Definition [informal] : A | trivial equation | is small degree

combination of the G; and the z;, with terms containing at least

one (G; and such that it’s complexity (e.g. multivariate degree) does

not collapse.

Soundness of the definition | : One such equation, substituted with

the values of G; = 0 gives a new low degree equation in the z;.

Remark : The same notion applies to block and stream ciphers.
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Implicit equations attacks [Patarin, Courtois|.

Several attacks that use several types of equations.

Common properties :
¢ We can only predict the results in very simple cases.

¢ Experimental equations can be found with no apparent theoretical

background.
¢ The equations are detected only beyond some threshold (e.g. 840

Mo).
‘ HFE Challenge 1 '

We found equations of type 1 + x + y + 2y + zy? + z3y + 2%y,
Gives an attack in 262 published at RSA 2001, 390 Gb.

In 2002 Faugere solved it in 243 using Grébner bases F5/2 algo.
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‘ Asymptotic security of HFE '

Attack Cxty d=nPD
Shamir-Kipnis Crypto’99

HFE ~ sHFE ~» MinRank ~» MQ
Shamir-Kipnis-Courtois

HFE ~» sHFE ~» MinRank
Courtois

3
elog n

2
elog n

e log2 n
HFE ~» Implicit Equations

HFE problem is polynomial if d fixed (not HFEv etc..).
The degree d can be quite big in practice.

It is subexponential, in general : d = n©).

sHFE is probably not polynomial in general,
as MinRank is believed exponential.
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‘ State of Art on HFE security '

¢ The asymptotic complexity of breaking the algebraical HFE (HFE

problem) is currently elog®n

o In practice basic HFE with d > 128 is still quite secure (O(n19)).

¢ Modified, combinatorial versions of HFE improve the security :
-HFE~ [Eurocrypt’96, Asiacrypt’98],

-HFEv [Eurocrypt’99], Quartz, Flash and Sflash [RSA 2001, Nessie].
However Courtois, Daum and Felke showed that they can still be
attacked [PKC 2003].

¢ Combinatorial versions of HFE can be either :
-hundreds of times faster than RSA and be implemented on smart

cards (Flash, Sflash), or
-give very short signatures for memory cards (Quartz).
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‘ Digital signatures. '

F - a trapdoor function, GF(q"™) — GF(q™) bits.

Usual method : | o = F~Y( H(M) ) H - cryptographic hash.

A generic attack : Existential Forgery in ¢™/2.

m /2

Precompute a list g outputs F'(o;), for random o;.

It allows to compute an inverse of F', Tr = F_l(y),

with probability qm/2/qm = q~™/2 over y.

Try q™/? versions of the message to be signed
H(My),..., H(qu/Q), adding spaces, commas, addenda etc..

For roughly about one of them we are able to compute an inverse.

We have then a valid pair (message, signature) : F'(o;) = H(M;)
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Classical scheme : signatures of m bits are broken in ¢™/2.

Public key cryptosystems : very few candidates known.

PKC with very short block sizes : much fewer, only recently

known.

Before HF'E - published in 1996,
no non-broken trapdoor function known,
without an attack in qm/ 2
due to some linearity /group structure.

Y

Nobody dreamed about achieving a security better than ¢™/2.
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‘ Short signatures '

Solution for m = n, and 2 inverses.

Hi

1

Ho @ F~1(Hy)
o= H{ & F_l(HQ S F_l(Hl))

|(H1,H2)| = 160 bits
lo| = 80 bits.
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Generalization for K inverses

c=F '"(Hxk @®.. ®F "(Hs® F '"(H, ® F~'(Hy))...)

If m > n : for each inverse add m — n bits to signature.

Nicolas T. Courtois

o<+ 0
for + = 1 to K do
{
o<+ o @ H;(M)
Ue F o)
o+~ Ui_ym
Addgq || .. [1Add; () < Ulmt1)—n
¥
return o||Addq1]]|. .. ||AddK(n—m)

The generalized Feistel-Patarin construction

October 2002
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. K
A generic attack : KExistential Forgery in q K+1 ",

Precompute a list ¢ K+ outputs F(o;), for random o;.
It allows to compute an inverse of F, r=F"1(y),

_K _ 1
with probability g K+1 m/qm —q EF1™ over y.

It allows to compute K inverses of F', with probability
K

1 K
— m — m
g K+1 —q EF17,

K
4. Try q K+1 "~ versions of the message.

5. We have then a valid pair (message, signature) : F'(o;) = H(M;)

‘ The converse, or is to possible to prove the security of Quartz ? '

Conjecture . If H behaves as a random oracle and if there are no
algorithms better than the exhaustive search for F', then, given the
public key, the signature cannot b?{forged in less than

T >qK+17",
For chosen-message attacks, false in general, ambiguity on F 1.
Proven in a paper to appear at PKC 2003, but not for Quartz
construction. For Quartz the proof is not tight, 7' > 2°° instead of

280
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‘ Signature length for given security '

ol = [(m+ K - (n —m))logy q]  bits

%

Application to Quartz :
K =4, |o| = 128 bits, Security = 2°Y.

The shortest signatures known for security =~ 2%° :

1024 bits
240 bits [Rump session Crypto 2001]

160 bits [Boneh et al. Asiacrypt 2001]

128 bits [Courtois, Goubin, Patarin 2000]
92 bits My PhD thesis, sec. 19.4.2.

87 bits [Courtois, Finiasz, Sendrier 2001]

RSA

improved DSA

EC + Weil pairing
HFEv-, Quartz
HFEf+

McEliece

Clofe]e]e|e

Nicolas T. Courtois
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‘ Bad question '
What signatures are the best ?

Use several algorithms and issue several certificates.

Programs, terminals and devices will have at least one common

algorithm for many years.

Pro-active scenario : Invalidate some algorithms and introduce

new ones.
Example, when 768-bit RSA is broken, the 1024-bit RSA expires.
Un example of combined certificate :

RSA + EC + HFE = 1024 + 320 + 128 bits.

RSA is slow and signatures are so long that all the rest is for free!
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‘ Zero-knowledge Identification '

The breakthrough invention of Zero-knowledge [Goldwasser, Micali,
Rackoff 1985].

A Zero-knowledge identification protocol :
A protocol between two units the Prover and the Verifier.

Goal At the end of interaction V says Accept or Refuse.
Correctness An honest Prover is always accepted.
Soundness No one can impersonate the Prover with an

overwhelming probability.

Zero-knowledge An (even malicious) verifier cannot extract

from the Prover any information about Prover’s secret knowledge
(or ability) that he can’t find out himself.

Nicolas T. Courtois
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‘ Zero-knowledge Identification schemes : '

|Goldwasser, Micali, Rackoff 1985]
Provably secure entity authentication based on a difficult problem.

‘ Known solutions '

The best practical Zero-knowledge protocols are arithmetical :

Fiat-Shamir, Guillou-Quisquater, Schnorr.

Still, there are practical schemes based on a NP complete problem :
— PKP [Shamir]

— CLE [Stern]

— PPP [Pointcheval]

— Schemes related to coding [Harari, Girault, Veron, Stern, Chen)|.
New algorithm in this branch - MinRank.

Nicolas T. Courtois
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‘ Protocol settings '

The public key are m matrices n X n over a finite field GF'(q),
Ml, e ey Mm.

The secret key is o € GF(q)", such that M = ) " «; - M; has the

rank r < n.

‘ Proposed instances of MinRank - example : '

K = GF(65521), n =7, m = 10, r = 4 = best attack in 2122,

9 random matrices 7 X 7, 10th matrix is a sum of a random matrix

of rank r = 4 and some linear combination of the other 9 matrices.
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‘ The Prover computations '

— two random non-singular matrices S and T'.

P chooses :

— arandom n X n matrix X.

— a random combination 51 of M; :

Ny 22517:'-7%

P uses the expression of M to get an expression of No = M + Ny as :

No ZZB%'Mz‘

Now No — N1 = M, each of them is just a random combination.
(I'N2S) — (T'N1S) = T(Na—N1)S = TMS
(TN2S+ X)— (TN1S+X) = T(Na—N1)§S = TMS
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‘ One round of identification '

\

H(X), H(TN,S + X), H(TN2S + X), H(S,T)

q€{0,1,2}

If ¢ = 0 the prover reveals :

\
[4

(TN1S + X), (TN2S + X)

If g = 1,2 the prover reveals :

S: T7 /BCJ7X
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‘ Conclusion : how to design new multivariate schemes '

The security should be [provably] reduced to some difficult

problem. Such reductions already exist for Quartz, Flash,

Sflash, MinRank authentication, McEliece, and partly for

‘ Further work on the problems '

sHEFE.

& MQ and MinRank are the foundation of many
cryptographic schemes. All attacks are currently exponential.

— If broken, most multivariate schemes are broken.

& There are many other open problems to study : for example
the security of Sflash/C™*™ 7. Currently at least exponential.

— If broken, most other schemes are still secure.
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‘ Perspectives '

Multivariate cryptography is very rich :

> Each cryptographic problem probably has a solution in
multivariate cryptography. (e.g. ring signatures with MinRank).

¢ In most cases, a small modification of a scheme that is
broken gives schemes that are probably very secure.

‘ Applications in practice '

The schemes such as Sflash designed for performance are

fragile and could be broken.

Other schemes such as Quartz or MinRank, will probably
always be secure if the parameters are well chosen, and can be
applied in practice with some confidence.
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