

Algebraic Cryptanalysis:

From Plug-and-Pray
Experimental Approach
to Constructive Optimization

Nicolas T. Courtois
University College London, UK

Topics

- AC, "Algebraization", I/O equations method.
 - challenges: AES[Courtois-Pieprzyk], ECDLP[Diem].
- Two Philosophies, 1.+2.
- 1. Classical approach: XL, XSL, predictions,
- 2. Algebraic coding and optimization.

Overdefined heuristics, phase transitions => how "Degree of regularity" can be reduced with help of redundancy and oracles!

Key Question

- Can do better than just contemplate these transitions?
- Can we explicitly engineer phase transitions to happen?

Toy examples:

- ElimLin on Simon block cipher: the force of an asymptotic
- ECC Coding: how redundancy leads to explicit I/O equations => explicitly constructed degree falls.

Planet Earth A.D. 2016

Mafia Economy
Manufacture of Toxic Waste
Debt Slaves

Solution

Travel to a Different Planet!

Which Planet?

1. A planet where a crypto currency is at the centre of a more inclusive economy

2. A planet where quantum computers break RSA, ECDLP etc...

3. A planet where algebraic cryptanalysis breaks AES, ECDLP etc...

Which Planet?

1. A planet with a crypto currency

2. A planet full of quantum computers

3. A planet full of algebraic cryptanalysts

=> all 3 planets have MORE jobs for crypto researchers...

Algebraic Cryptanalysis [Shannon]

Breaking a « good » cipher should require:

"as much work as solving a system of simultaneous equations in a large number of unknowns of a complex type"

[Shannon, 1949]

This Talk

I will review some my research on Algebraic Cryptanalysis in the last 15+ years and try to focus on some "strategic" questions, key principles, big picture

False/Real difficulties.

- Some things are not necessarily a problem and CAN be solved/circumvented
- Şome are really a problem and we hit the wall

False or Real Difficulty?

Not necessarily a problem:

- Lack of algebraic structure, not clear how to even start doing any sort of "algebraic" attack.
- 2. Many rounds, large systems of equations with lots of variables.
- 3. NP hard problems hard instances?

Real difficulties:

e.g. ECDLP=>

Semaev polys

- Complexity grows exponentially oops.
- 2. Bad equations topology / density / connectivity.
- 3. Mars vs. Venus problem incompatible constraints.

Challenges (1)

AES, cf. Courtois-Pieprzyk attack

Challenges (2)

ECDLP, cf. PKC 2016 paper:

Algebraic approaches for the Elliptic Curve Discrete Logarithm Problem over prime fields

Christophe Petit¹, Michiel Kosters², and Ange Messeng³

Comment:

 Another "plug-and-pray" attack which just does <u>not</u> work => bad "equations topology"

Challenges (2)

ECDLP, cf. PKC 2016 paper:

Table 4. Prime case, p-1 subgroups

 $O(e^{2.0*n})$

Algebraization: A Tool For Cryptanalysis

MQ Problem

Find a solution to a system of m quadratic equations with n variables over a field/ring.

Cryptography and MQ

Claim: 50 % of all applied cryptography depends on the hardness of MQ.

For example: RSA is based on MQ with m=1 and n=1: factoring N \Leftrightarrow solving $x^2=C \mod N$.

MQ Problem

Multivariate Version [n variables]

Jean Dieudonné

[French Mathematician]
Book "Calcul infinitésimal", Hermann, 1980

[..] Everybody in mathematics knows that going from one to several variables is an important jump that is accompanied by great difficulties and calls for completely new methods. [...]

MQ Problem over GF(2)

Find a solution (at least one), i.e. find $(x_0, ..., x_{n-1})$ such that:

$$\begin{cases} 1 = x_1 + x_0x_1 + x_0x_2 + \dots \\ 0 = x_1x_2 + x_0x_3 + x_7 + \dots \\ \vdots \end{cases}$$

Dense MQ

Dense MQ is VERY hard. Best attacks $\approx 2^{0.8765n}$ Also a good candidate for PQ crypto.

=> Allows to build a provably secure stream cipher based on MQ directly!

C. Berbain, H. Gilbert, and J. Patarin:

QUAD: A Practical Stream Cipher with Provable Security, Eurocrypt 2005

 open problem: design a provably secure block cipher...

Schneier [Applied Cryptography book]

- [...] Any algorithm that gets its security from the composition of polynomials over a finite field should be looked upon with scepticism, if not outright suspicion. [...]
- Actually any cipher e.g. AES can be seen in this way... Including provably secure QUAD.
- ECDLP is also 'based' on hardness of solving polynomials over finite fields.
 - Igor Semaev: Summation polynomials and the discrete logarithm problem on elliptic curves, eprint 2004/031.

Algebraization:

Theorem:

Every function over finite fields is a polynomial function.

[can be proven as a corollary of Lagrange's interpolation formula] $P(X) = \sum_{i=1}^{t} Y_i \cdot \prod_{1 \le j \le t, j \ne i} \frac{X - X_j}{X_i - X_j}$

False over rings!

Better Method: I / O Degree:

Consider function $f: GF(2)^n \to GF(2)^m$, f(x) = y, with $x = (x_0, ..., x_{n-1})$, $y = (y_0, ..., y_{m-1})$.

Definition [The I/O degree] The I/O degree of f is the smallest degree of the algebraic relation

$$g(x_0,\ldots,x_{n-1};y_0,\ldots,y_{m-1})=0$$

that holds with certainty for every couple (x, y) such that y = f(x).

These can be used directly for algebraic coding.

[sometimes more equations are needed see the notion of "describing degree"]

- Two major ways to approach the general problem of solving large system of non-linear polynomial/algebraic equations.
- 1. Either we expand the number of monomials.
 - work in polynomial ideals, XL F5 etc...
- 2. Or we expand the number of variables
 - MC-efficient coding
 - algebraic coding

In both case we have two quantities:

R = number of equations

T = number of monomials

Main idea: R grows FASTER than T.

Two major ways to approach the general problem of solving large system of non-linear polynomial/algebraic equations.

- 1. Either we expand the number of monomials.
 - work in polynomial ideals, XL F5 etc...
- 2. Or we expand the number of variables
 - MC-efficient coding
 - algebraic coding

???

previous research tends to show that this is a "bad idea".

E.g. XL is preferred to Linearization [Eurocrypt 2000].

In a Way we also have

Two major ways to approach the general problem of solving large system of non-linear polynomial/algebraic equations.

- 1. Plug-and-pray ⊗
 - Build experiments, maybe it works?
- 2. More constructive!
 - More freedom for the attacker
 - Algebraic optimization problems

Find an "economical" way to expand the problem with redundancy so that the "degree of regularity" decreases the most

Philosophy 2 Is Not Stupid

Two major ways to approach the general problem of solving large system of non-linear polynomial/algebraic equations.

- 1. Either we expand the number of monomials.
 - work in polynomial ideals, XL F5 etc...
- 2. Or we expand the number of variables
 - MC-efficient coding
 - algebraic coding

Glossary

- MC = Multiplicative Complexity, informally counting the number of multiplications in algorithms
 - trying to do it with less
- REMARK:
 AES and Simon have <u>INCREDIBLY low MC</u>.

$x \rightarrow x^{-1}$ n=4 [Boyar and Peralta 2008-9]

eprint.iacr.org/2009/191/

Fig. 1. Inversion in $GF(2^4)$.

5 AND 11 XOR

Bit-Slice Gate Complexity

PRESENT S-box

- Naïve implementation = 39 gates
- Logic Friday [Berkeley] = 25 gates
- Our result = 14 gates.


```
T1=X2^X1; T2=X1&T1; T3=X0^T2; Y3=X3^T3; T2=T1&T3; T1^=Y3; T2^=X1; T4=X3|T2; Y2=T1^T4; T2^=~X3; Y0=Y2^T2; T2|=T1; Y1=T3^T2;
```

Fig. 1. Our implementation of the PRESENT S-box with only 14 gates

Another S-box – CTC2

Our new design:

Best Paper!

GOST Attacks with a SAT Solver

eprint.iacr.org/2011/626

Rounds	4	8		8		8		8	8
Key size	128	256							
Data	2 KP	2 KP		3 KP		4 KP		6 KP	≈ 600 KP
See	Fact 3	[52]	Fact 5	[35]	Fact 6	[35]	Fact 7	Fact 127	Fact 10
cf.	page 13	Fact 15	page 40		page 26		page 26	page 207	page 35
cf. also	[97]				Fact 16		Fact 13		
Memory bytes	small	2 ⁴³ 2 ⁴⁶		2^{68}	small	2^{69}	small		small
Time	2^{24}	2^{128}	2^{127}	2^{107}	2^{110}	2^{94}	2^{94}	2^{83}	2^{50}

Table 1. Principal attacks on 8 rounds of GOST with 2,3,4 and more KP

In both case we have two quantities:

R = number of equations

T = number of monomials

Main idea: R grows FASTER than T.

Which is simultaneously real and "impossible".

More precisely let

F = number linearly independent equations.

F cannot grow faster than T, but R can.

The saturation when linear dependencies do appear because they <u>have to</u> is frequently what we look for.

The principle of XL:

Multiply the initial equations by low-degree monomials:

$$1 = x_5 + x_0 x_1 + x_0 x_2$$

becomes:

$$x_1 \cdot 1 = x_1 \cdot (x_5 + x_0 x_1 + x_0 x_2)$$

(degreee 3 now).

How XL works:

Initial system: m equations and n²/2 terms.

Multiply each equation by a product of any D-2 variables:

- Equations R = $m \cdot \binom{n}{D-2}$ Terms T = $\binom{n}{D}$

Idea: One term can be obtained in many different ways, T grows slower than R.

$$\frac{\text{Necessary condition: R/T > 1}}{\text{gives } m \cdot \binom{n}{D-2} / \binom{n}{D} > 1} \text{ and thus } \mathbf{D} \approx n / \sqrt{m}$$

If sufficient, the complexity of XL would be about

$$\mathsf{T}^{\omega} = \binom{n}{n/\sqrt{m}}^{\omega}$$
 Sub-exponential !?!

XL works quite well

n	10	10	10	10	10	
m	10	14	16	17	18	
D	3	3	3	3	3	
R	110	154	176	187	198	
$oxed{\mathbf{T}}$	176 176		176	176	176	
Free	110	154	174	175	175	

20	20	20	20	20
20	40	50	60	65
3	3	3	3	3
420	840	1050	1260	1365
1351	1351	1351	1351	1351
420	840	1050	1260	1350

64	64
512	1024
3	3
33280	66560
43745	43745
33280	43744

Figure 1: XL simulations for D=3.

n number of variables.

m number of equations.

D we generate equations of total degree $\leq D$ in the x_i .

R number of equations generated (independent or not). $R = m \cdot \binom{n}{D-2}$

T number of monomials of degree $\leq D$ $\top = \binom{n}{D}$

Free number of linearly independent equations among the R equations.

 \diamond XL will work when $Free \geq T - D$.

The behaviour of XL

It is possible to predict the <u>exact</u> number of linearly independent equations in XL.

D	Free
3	$Min\left(T,R ight)$
4	$Min\left(T,R-\binom{m}{2}-m\right)$
5	$Min\left(T,R-(n+1)\binom{m}{2}-(n+1)m\right)$
6	$Min\left(T,R-\left[\binom{n}{2}+\binom{n}{1}+\binom{n}{1}+\binom{n}{0}\right]\cdot\left[\binom{m}{2}+\binom{m}{1}\right]+\binom{m}{3}+m^2\right)$

And "XSL"

"XSL is not an attack, it is a dream"

Vincent Rijmen, AES designer

The XL idea:

Multiplying the equations

by one or several variables.

The XSL variant:

Multiplying the equations

by one or several monomials (out of monomials present).

XL and XSL

Both work well, they operate a specific phase transition.

The curve reaches another curve and stays there.

n	24	24	24
m	16	27	32
D	5	5	5
R	37200	l	
T	55455	55455	55455
F	33800	53325	55454

Simulations on a "Toy Cipher"

Free/(T-T') - XSL works for up to 16 rounds.

Three Stages

Algebraic attacks on block ciphers work in 3 stages:

1. Write good equations – overdefined, sparse or both.

2. Expand - to obtain a very overdefined system.

3. Solve at saturation / phase transition point.

Reinvented in 2006

Algebraic attacks on block ciphers today:

Write good equations – overdefined, sparse or both.

Expand - avoid / minimise impact of...

- Final "in place" deduction / inference / elimination method.
 - ElimLin alone and T' method. Very powerful.

Reinvent it in 2016

Algebraic attacks on block ciphers today:

- 1. Write EVEN BETTER equations
 - => even more overdefined R/T≈1.
 - => redundant "algebraic codes"
 - => work on equations topology/density.

- Expand avoid / minimise impact of...
- 3. Final "in place" deduction / inference / elimination method.
 - ElimLin alone and T' method. Very powerful.

Find good equations: such that:

R

$$= 1/4 \text{ or so..}$$

Can do Better?

Find better equations: such that:

R

____ ≈ 1 already

T

+questions of equations density and topology

The Redundancy+Oracle idea:

We can decrease the "regularity degree" by adding variables AND new facts coming from an oracle.

The Redundancy+Oracle idea:

Example 1: ElimLin.

Oracle=encryption oracle.

Example 2: EC point splitting.

Oracle=block box EC point addition.

A Thought Experiment

EC point splitting.

$$P1 + P2 = Q$$

+ extra equations to code a "factor basis".

More Overdefined

Same point splitting Pb. •

$$\begin{cases} P1 + P2 = Q \\ P1 + D = P1' \\ P2 + E = P2' \\ P1' + P2' = (Q + D + E) \end{cases}$$
 oracle

- added 2 constants D,E
- 2 new vars
 - linear ECC code expansion of vars
- 3 new eqs!

- + same x extra equations to code a "factor basis".
- strict improvement: 2+x → 3+x

The Same Happens in ElimLin

By "magic" the regularity degree decreases with K

K= data complexity (K KP or K CP).

Asymptotic Aspects

Something VERY disturbing happens in ElimLin.

How quickly R or/and F grow when K increases?

8 Rounds of Simon 64/128

The Impossible Happens

Remark: In the long run it CANNOT be super-linear.

→linear when K→∞

However in the long run the cipher is broken for a fixed value of K.

58

Redundancy Up and Downs

#Variables at the end of ElimLin

Back to EC Point Splitting Questions

Can we also produce a system of equations with fast growth due to redundant ECC coding?

$$P1 + P2 = Q$$

+ extra equations to code a "factor basis".

Elaborate Prototype [eprint 2016/704]

$$P1 + P2 = Q$$

+ a very new unique method to code a "factor basis"

simulations with 9390489 incremental simulator $K = 4$								
K value		4						
K1 value					3			
K2 value					3			
/maxorder value					6			
K' value	predictor	4	6	8	10	12	14	16
#vars	2(1+K(K'-1))	26	42	58	74	90	106	122
$F_{1+0}^{J=1}(K) =$	$2K(0.5K'^2 - 1.5K' + 1)$	24	80	168	288	440	624	840
order 1	$2K \cdot FQ$	24	80	168	288	440	624	840
$F_{2+0}^{J=2}(K) =$	$K(K-1)(K'^2-6K'+9)$	12	108	300	588	972	1452	2028
order $2 + 0$	$F_{2+0}^{J=2}(K)$	12	108	300	588	972	1452	2028
$F_{1+1}^{J=2}(K) =$	$K^2(K'^2 - 12K' + 22)$	_	_	_	32	352	800	1376
order $1 + 1$	$F_{1+1}^{J=2}(K)$	0	0	0	32	352	800	1376
order 2		12	108	300	606	1324	2252	3404
predicted $J \leq 2$	Σ	36	188	468	908	1764	2876	4244
$actual \le 2$		36	188	468	894	1764	2876	4244
$F_{2+1}^{J=3}(K) =$	$(2K^2/2-2K)(K'-2)$	_	_	_	192	240	288	336
order $2 + 1$		0	0	0	192	240	288	336
order $3 + 0$		0	0	0	0	0	0	0
order 3		0	0	0	192	240	288	336
order $4-6$		0	0	24	0	0	0	0
F total order 1-6		36	188	492	1100	2004	3164	4580
T2		352	921	1712	2776	4096	5672	7504
F/T2		0.10	0.20	0.29	0.40	0.49	0.55	0.61

Are We Making Any Progress?

Possibly this approach is stupid and NOT as good as traditional highly-optimized Gröbner basis approach.

=> Everybody uses Semaev polynomials + "plug-and-pray" GB.

$$S_3(x_1, x_2, x_3) = (x_1 - x_2)^2 x_3^2 - 2[(x_1 + x_2)(x_1 x_2 + A) + 2B]x_3 + (x_1 x_2 - A)^2 - 4B(x_1 + x_2)$$

Are We Making Any Progress?

Possibly this approach is stupid and NOT as good as traditional highly-optimized Gröbner basis approach.

=> Even if so, I believe this approach is BETTER because we avoid "plug-and-pray" and construct our degree falls and other equations more explicitly. More control/insights on what we do.

Merits of Redunancy

Linear ECC Code expansion

=>

NEW very regular families of I/O equations which we can construct explicitly

Example: New ECC I/O relations

D73 Theorem [Courtois 2016]

Theorem 4.2.1 (D73 Theorem). We consider the following set of variables on EC, a special form of ECC Code with 3 inputs and 7 outputs for any Weierstrass elliptic curve modulo a large P.

$$(P1, P2, P3) \mapsto P1 + P3 \quad P2 + P3 \quad P1 + P2 + P3$$

$$P3 \quad P3 \quad P1 + P2 + P3$$

If all the 7 points are distinct from the ECC neutral element ∞ we have:

$$sx1*sx2*(sx23-sx13) + sx1*sx3*(sx12-sx23) + sx2*sx3*(sx13-sx12) + sx123[sx1*(sx13-sx12)+sx2*(sx12-sx23)+sx3*(sx23-sx13)] = 0$$

