
University College London
Department of Computer Science

Cryptanalysis Lab 5

J. P. Bootle

Copyright c© 2016 jonathan.bootle.14@ucl.ac.uk
March 8, 2017 Version 2.0

mailto:jonathan.bootle.14@ucl.ac.uk

2

Side Channel Attacks

Bob’s RSA implementation has public key (N, e) = (183181, 5) where
N is a product of two primes p and q. He receives a ciphertext c
from Alice. Bob uses the following square-and-multiply algorithm to
compute m = cd mod N .

def BobPower(a,k,n):
K = bin(k)[2:] # K is binary expansion of k,
A = a % n # with the most significant bit
c = 1 #stored in K[0]
if int(K[0])==1:

c = (c*A) % n #modular multiplication here
for j in range(1,len(K)):

c = (c∧2) % n #modular squaring is cheap
if int(K[j])==1:

c = (c*A) % n #modular multiplication uses
return c #more power

JJ II J I Back

3

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 1.

(a) The power usage of Bob’s CPU as he decrypts the ciphertext is
given in the graph shown. What value for the decryption exponent
d is suggested by the power usage graph?

(b) Using the values of d, e and N , can we compute p and q?

JJ II J I Back

4

Continued Fractions and RSA

For any real number r, its continued fraction representation is a
(possibly infinite) sequence of integers [q0; q1, q2, . . .] such that

r = q0 +
1

q1 + 1
q2+

1

q3+ 1
q4+...

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 2.

(a) (Bonus Question) If r = a
b , show that the continued fraction repre-

sentation of r can be computed with Euclid’s Algorithm on (a, b).
(b) SAGE contains functions for computing continued fraction expan-

sions. Try “a = continued fraction(pi); a”.
(c) By truncating the continued fraction expansion of a number, we

can obtain a rational approximation to that number. The ratio-
nal number An/Bn representing the continued fraction expansion
[q0; q1, . . . , qn] is called the nth convergent. Try “a.convergent(3)”,

JJ II J I Back

5

and compare the decimal expansion of this number to that of π.
To how many decimal places do the two values agree?

(d) (Bonus Question) It is known that if |r−m/n| < 1/2n2, then m/n
is a convergent to r. For an RSA public/private key-pair, show
that if N = pq with q < p < 2q, and d < N1/4/3, then k/d is a
convergent to e/N , where ed− 1 = kφ(N).

(e) Let N = 90581, e = 17993 be an RSA public-key. Use continued
fractions to find d.

Generating Discrete Logarithm Instances

Recall that a prime p is called a ‘strong prime’ if p = 2q + 1, where q
is also prime.

The following function generates random discrete logarithm in-
stances. On input n, the function first finds the smallest strong prime
p that is greater than n. Thus, Z∗p has a subgroup of order q. Finally,
the function generates two random elements g, h of the subgroup, and
outputs [p, q, g, h].

JJ II J I Back

6

def dlog gen(n):
p = next prime(n)
while not is prime(floor((p-1)/2)):

p = next prime(p)
x = randint(1,p-1)
y = randint(1,p-1)
g = x*x % p
h = y*y % p
return [p,floor((p-1)/2),g,h]

Copy and paste the code into SAGE. This function will be used
to generate discrete logarithm instances for the following questions.

Index Calculus Algorithm

Exercise 3. In this exercise, you will use an index calculus algorithm
to find discrete logarithms, using SAGE like a pocket-calculator.

(a) Use the code in the previous section to generate a discrete loga-
rithm instance (p, q, g, h) with p > 1000.

(b) Compute z = gahb mod p for random values of a and b. Write

JJ II J I Back

7

a function called “smooth factors” that checks whether z is 13-
smooth. The function should return “False” if z is not smooth,
and should return a vector of exponents if z is smooth. For ex-
ample, if z = 23 · 32 · 13, the the corresponding output would be
(3, 2, 0, 0, 0, 1).

(c) If z is a product of small primes, then store the exponents of the
product in the rows of a matrix E. Store a and b in the rows of
a matrix M . Repeat the process above until the number of rows
of E is one greater than the number of columns. For example, for
z = 23 · 32 · 13, then g−ah−b · 23 · 32 · 13 the corresponding row in
the matrix E would be (3, 2, 0, 0, 0, 1), and in M , (a, b).

(d) Look up the “MatrixSpace” command in the SAGE documenta-
tion. Create a space S2 of 7×6 matrices over GF (2), and a space
Sq of 7 × 6 matrices over GF (q). Next, create new matrices, E2
over GF (2) and Eq over GF (q), such that E2 = E mod 2, and
Eq = E mod q.

(e) Look up the commands “kernel” in the SAGE documentation.
Use it to find vectors v2 and vq such that v2 ∗M2 = 0 mod 2
and vq ∗Mq = 0 mod q. If no such vectors exist, then repeat the

JJ II J I Back

8

process above in order to obtain new matrices.
(f) Look up the SAGE commands for the Chinese Remainder Theo-

rem. Use these commands to produce a vector v which satisfies
v2 = v mod 2 and vq = v mod q.

(g) The vector v satisfies v ∗E = 0 mod (p− 1). Compute (A,B) =
v ∗M , and hence find the discrete logarithm of h with respect to
g.

JJ II J I Back

9

Solutions to Exercises

Exercise 1(a) When computing cd mod N , the square-and-multiply
algorithm will either do a squaring operation, or a squaring operation
then a multiplication, depending on whether each bit in the binary
representation of d is a 0 or a 1. The multiplication is usually more
computationally intensive. This means that we can read off the binary
representation of d straight from the graph.

This gives us d = 72357. �

JJ II J I Back

Solutions to Exercises 10

Exercise 1(b) Since N = pq, we know that φ(N) = (p− 1)(q− 1) =
pq− p− q+ 1. Thus p+ q = N −φ(N) + 1. Furthermore, in RSA, we
know that ed = 1 mod φ(N). Therefore, ed − 1 = kφ(N) for some
positive integer k.

Now, consider the quadratic equation

X2−
(
N − ed− 1

k
+ 1

)
X+N = X2−(p+q)X+pq = (X−p)(X−q) = 0

We already know N , e and d. If we guess values of k, we can try
to use the quadratic formula to obtain p and q. Guessing k = 2 gives
us X2 − 2290X + 183181, and then we recover p = 2207 and q = 83
from the quadratic formula.

The disadvantage of this approach is that it seems to involve guess-
ing k and we might have given up if k was large and prime.

Here is a second solution. We know that ed − 1 = kφ(n). For
any a with gcd(a,N) > 1, we have aφ(N) ≡ 1 mod N . Substituting
in the values of e and d, we know that a361784 ≡ 1 mod N . Taking
inspiration from the Miller-Rabin test, we can use this fact to try and
find square roots of 1 not congruent to ±1 mod N .

JJ II J I Back

Solutions to Exercises 11

We divide 361784 by 2 as many times as possible, to get 45223.
Now, we pick a random value of a between 1 and N − 1. We check
that gcd(a,N) = 1 (if not, we have already factored N). Then, we
raise to the power 45223 mod N , and then square repeatedly, hoping
that we get a non-trivial square-root. For example, with a = 2, we
get A = 97109, and find that A2 ≡ 1 mod N . Therefore, (A +
1)(A− 1) ≡ 0 mod N , and gcd(A± 1, N) give factors of N . Finally,
gcd(97110, 183181) = 83 and 183181 = 83× 2207.

It can be shown, using the Chinese Remainder Theorem, that this
approach has a success probability of roughly 1

2 , in the case that N
is a product of two distinct primes. �

JJ II J I Back

Solutions to Exercises 12

Exercise 2(a) Using Euclid’s Algorithm, we find integers r0, r1, r2, . . .
such that:
a = q0b+ r0
b = q1r0 + r1
r0 = q2r1 + r2
...
rn−1 = qn+1rn

We substitute the expression for a into a
b and rear-

range to get
a

b
=
q0b+ r0

b
= q0 +

r0
b

= q0 +
1
b
r0

We can then substitute the expression for b and rearrange in a similar
way to get

a

b
= q0 +

1

q1 + 1
r0
r1

Repeating the same idea, we eventually arrive at

r = q0 +
1

q1 + 1
q2+

1

q3+ 1
q4+...+ 1

qn+1

JJ II J I Back

Solutions to Exercises 13

�

JJ II J I Back

Solutions to Exercises 14

Exercise 2(b) SAGE should display ”[3; 7, 15, 1, 292, 1, 1, 1, 2, 1,
3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...]”. �

JJ II J I Back

Solutions to Exercises 15

Exercise 2(c) The third convergent to π is 355/113, which approxi-
mates π to 6 decimal places. �

JJ II J I Back

Solutions to Exercises 16

Exercise 2(e) The first convergent is 1/5, which shows that d = 5.
�

JJ II J I Back

Solutions to Exercises 17

Exercise 3(a) An example of a discrete logarithm instance is
[p, q, g, h] = [1019, 509, 277, 487]. �

JJ II J I Back

Solutions to Exercises 18

Exercise 3(b) Using the following code, after a few tries, you can
discover, for example, that g308h809 = 24 · 32 mod p.

def factor base(B):
factor base = [2]
while factor base[-1] < B:

prime = next prime(factor base[-1])
factor base = factor base + [prime]

return factor base

(continued on next page)

JJ II J I Back

Solutions to Exercises 19

def smooth factors(n):
z=n
exponent list = []
for prime in factor base(13):

exponent = 0
while mod(z,prime)==0:

z=z/prime
exponent = exponent+1

exponent list = exponent list + [exponent]
if z>1:

return False
return exponent list

�

JJ II J I Back

Solutions to Exercises 20

Exercise 3(c) Using the example from the previous part, we have a
row (4, 2, 0, 0, 0, 0) in the matrix E and a row (308, 809). Combining
the following code snippets with “while” loops should enable you to
produce a matrix.

a = randint(1,p-1)
b = randint(1,p-1)
z=(g**a)*(h**b)%p;z
exponent list = smooth factors((g**a)*(h**b)%p)
exponent list

M = M + [[a,b]];M
E = E + [exponent list];E

Finally, type “M = matrix(M)” and “E = matrix(E)”. Example
matrices may be found on the next page.

JJ II J I Back

Solutions to Exercises 21

M =

308 809
575 611
576 447
531 280
676 132
603 940
854 140

, E =

4 2 0 0 0 0
0 0 1 0 0 2
3 1 0 0 0 1
3 0 1 1 0 0
0 2 1 0 0 0
0 0 0 2 0 0
2 0 1 0 1 0

�

JJ II J I Back

Solutions to Exercises 22

Exercise 3(d) The following code produces the required matrices.
S2 = MatrixSpace(GF(2),7,6)
Sq = MatrixSpace(GF(q),7,6)
E2 = S2(E)
Eq = Sq(E)

Example matrices:

E2 =

0 0 0 0 0 0
0 0 1 0 0 0
1 1 0 0 0 1
1 0 1 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0

, Eq =

4 2 0 0 0 0
0 0 1 0 0 2
3 1 0 0 0 1
3 0 1 1 0 0
0 2 1 0 0 0
0 0 0 2 0 0
2 0 1 0 1 0

�

JJ II J I Back

Solutions to Exercises 23

Exercise 3(e) The “kernel” command produces several vectors which
span the left kernel of a matrix. Taking the first vector each time, the
following code produces the required vectors.

V2 = E2.kernel();V2;v2=V2[1];v2
Vq = Eq.kernel();Vq;vq=Vq[1];vq

�

JJ II J I Back

Solutions to Exercises 24

Exercise 3(f) The following code produces the vector v.

v = vector([crt(ZZ(v2[i]),ZZ(vq[i]),2,q) for i in range(0,len(v2))])

Continuing with the running example, we have

v = (1, 552, 932, 424, 42, 806, 0)

�

JJ II J I Back

Solutions to Exercises 25

Exercise 3(g) Since gahb = 2e23e3 . . . 13e13 for each pair of rows in
M and E, by finding a vector v in the kernel of E, we are able to
construct A and B such that gAhB = 1 mod p. Now, the discrete
logarithm can be computed as

k = −A ∗ inverse mod(B, p− 1)%(p− 1)

In our example, we find k = 1012.
�

JJ II J I Back

	 Solutions to Exercises

