
University College London
Department of Computer Science

Cryptanalysis Lab 3

J. P. Bootle

Copyright c© 2016 jonathan.bootle.14@ucl.ac.uk
March 8, 2017 Version 2.0

mailto:jonathan.bootle.14@ucl.ac.uk

2

Generating Discrete Logarithm Instances

Recall that a prime p is called a ‘strong prime’ if p = 2q + 1, where q
is also prime.

The following function generates random discrete logarithm in-
stances. On input n, the function first finds the smallest strong prime
p that is greater than n. Thus, Z∗p has a subgroup of order q. Finally,
the function generates two random elements g, h of the subgroup, and
outputs [p, q, g, h].

def dlog gen(n):
p = next prime(n)
while not is prime(floor((p-1)/2)):

p = next prime(p)
x = randint(1,p-1)
y = randint(1,p-1)
g = x*x % p
h = y*y % p
return [p,floor((p-1)/2),g,h]

JJ II J I Back

3

Copy and paste the code into SAGE. This function will be used
to generate discrete logarithm instances for the following questions.

Modular Exponentiation

The following function performs modular exponentiation. It computes
ak mod n and outputs the answer.

def MyPower(a,k,n):
K = bin(k)[2:]
A = a % n
c = 1
if int(K[0])==1:

c = (c*A) % n
for j in range(1,len(K)):

c = (c∧2) % n
if int(K[j])==1:

c = (c*A) % n
return c

JJ II J I Back

4

Copy and paste the code into SAGE. You may use this function
to check your solutions to discrete logarithm instances.

Elliptic Curve Diffie-Hellman

Click on the green letter in front of each sub-question (e.g. (a)) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

Exercise 1. In this exercise, you will use Sage and share a Diffie-
Hellman Key with a partner, using points on an elliptic curve. To
create an elliptic curve E defined by y2 = x3 + ax + b over Fp, use E

= EllipticCurve(GF(p),[a,b]).

(a) Create an elliptic curve E defined by y2 = x3 + 70x + 355, over
the finite field of size 1031.

(b) The command n = E.cardinality() sets n to be the number of
points on the curve. What is the value of n? What properties
should n have in order to be suitable for Diffie-Hellman?

(c) Typing E.gens() gives a set of points which generate all the points
on the elliptic curve. In this case, there is only one generator, and

JJ II J I Back

5

P = E.gens()[0] sets P to be a group generator for this curve.
If P = (x : y : z), then your partner can get P by typing P =

E(x,y,z).
(d) Choose a random integer a such that 0 ≤ a < n. Your partner

should choose b similarly.
(e) Use Sage to find the elliptic curve point A = a∗P , and give this

to your partner. For example, if A = (x : y : z) then your partner
can type A = E(x,y,z) to get A.

Your partner should compute B = b∗P and give this to you in
the same way.

(f) Use Sage to find a∗B = (ab)∗P . Your partner will also find (ab)∗P
via b∗A. The point (ab)∗P is your shared secret key. Check that
you and your partner computed the same answer.

Implementing the Pollard-Rho Algorithm

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 2.

JJ II J I Back

6

(a) Write a function iterator which implements the iterative func-
tion required for the Pollard-Rho algorithm for the discrete log-
arithm problem. This is part of the algorithm given on page 18
of the slides on DLOG and Factoring. The function should take
inputs [a, b,G] and p, q, g, h, where G = gahb, and output the new
values [a′, b′, G′] according to the iterative function.

(b) Write a function pollard rho which implements the low-memory
version of the Pollard-Rho algorithm. The function should take
inputs p, q, g, h as produced by the DLOG instance generator, and
output k ∈ {0, 1, . . . , q − 1} such that gk = h mod p. Run the
algorithm for a fixed number of iterations. You may wish to struc-
ture your code as follows.

• Definition of the initial [a, b,G] for the iteration.
• Set the number of iterations to do.
• Main loop using the iterative function.
• At each step of the main loop, check for collisions.
• Return the correct value of k or output ‘Fail’.

(c) According to the analysis of the running time of the Pollard-Rho

JJ II J I Back

7

algorithm, how many iterations should we expect to use before
the algorithm succeeds in finding a collision?

(d) Generate DLOG instances with dlog gen(n) for a range of large
n. Using the timeit command, test how long your program takes
to solve these instances. Plot a graph of the time taken to solve
each instance against the size of the group in the instance, using
the plot command or otherwise. Compare with your results from
the Baby-Step Giant-Step algorithm. Which of your implementa-
tions is faster?

(e) (Bonus Question) The running time of the Pollard-Rho algorithm
depends on the iteration function behaving like a random function.
Modifying the iteration function can improve the running time of
the algorithm in practice. Modify your functions iterator and
pollard rho to work as follows. Does this improve the running
time of the algorithm?
• pollard rho generates g′ = ga

′
hb′ and g′′ = ga

′′
hb′′ , where

a′, a′′, b′, b′′ are chosen uniformly at random from {0, 1, . . . , q−
1}.
• iterator takes g′, g′′, a′, a′′, b′, b′′ as additional inputs.

JJ II J I Back

8

• For 0 ≤ G < p/5, iterator maps [a, b,G] to [a + 1, b, G ∗ g].
• For p/5 ≤ G < 2p/5, iterator maps [a, b,G] to [a, b+ 1, G ∗
h].
• For 2p/5 ≤ G < 3p/5, iterator maps [a, b,G] to [2a, 2b,G2].
• For 3p/5 ≤ G < 4p/5, iterator maps [a, b,G] to [a+ a′, b+
b′, G ∗ g′].
• For 4p/5 ≤ G < p, iterator maps [a, b,G] to [a + a′′, b +
b′′, G ∗ g′′].

Polynomials in SAGE

Exercise 3.

(a) Try out the following sequence of SAGE commands.
GF125. = GF(5∧3)
b∧15
GF5.<x5>=GF(5)[]
GF125.<a> = GF(5∧3,’a’,modulus=x5∧3+x5+1)
GF125.multiplicative generator()

JJ II J I Back

9

for i in range(124): # Compute order(a) the hard way
print i,a∧i

a.multiplicative order() # The easy way

Implementing the Baby-Step Giant-Step Algorithm

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 4.

(a) Write a function ‘BSGS’ which implements the Baby-Step Giant-
Step algorithm. The function should take inputs p, q, g, h as pro-
duced by the DLOG instance generator, and output k ∈ {0, 1, . . . , q−
1} such that gk = h mod p.
You may wish to structure your code as follows.
• Calculate the sizes of the baby steps and the giant steps.
• Compute all of the baby steps, and store them in a list.
• Compute giant steps until you get an item in the list.
• Return the correct value of k.

JJ II J I Back

10

(b) Generate DLOG instances with dlog gen(n) for a range of large
n. Using the timeit command, test how long your program takes
to solve these instances. Plot a graph of the time taken to solve
each instance against the size of the group in the instance, using
the plot command or otherwise. What shape graph do you expect
to see?

JJ II J I Back

11

Solutions to Exercises

Exercise 1(a) Use E = EllipticCurve(GF(1031),[70,355]) to pro-
duce the correct elliptic curve. �

JJ II J I Back

Solutions to Exercises 12

Exercise 1(b) You should get n = 1009. For secure Diffie-Hellman
key exchange, we ideally want n to be large and prime so that the
Discrete Logarithm problem is hard in the elliptic curve group. �

JJ II J I Back

Solutions to Exercises 13

Exercise 1(c) An example generator is the point P = (5 : 393 : 1).
It doesn’t matter which generator you use, as long as you and your
partner are using the same generator. �

JJ II J I Back

Solutions to Exercises 14

Exercise 1(d) You can use a = randint(0,1009) to get a. �

JJ II J I Back

Solutions to Exercises 15

Exercise 1(e) The point a∗P is computed in Sage exactly as written
here: a*P. �

JJ II J I Back

Solutions to Exercises 16

Exercise 1(f) Get b∗P from your partner. �

JJ II J I Back

Solutions to Exercises 17

Exercise 2(a) The following code implements the iterative function.
def iterator(triple,p,q,g,h):

[a,b,G] = triple
if G < p/3:

return [(a+1) % q , b,(G*g) % p]
elif G > 2*p/3:

return [a,(b+1) % q,(G*h) % p]
else:

return [(2*a)%q,(2*b)%q,(G*G) % p]

�

JJ II J I Back

Solutions to Exercises 18

Exercise 2(b) The following code implements the Pollard-Rho algo-
rithm.

def pollard rho(p,q,g,h):
n = floor(sqrt(q))
ai = 1
bi = 0
Gi = g % p
a2i = 1
b2i = 0
G2i = g % p
for k in range(1,n):

[ai,bi,Gi] = iterator([ai,bi,Gi],p,q,g,h)
[a2i,b2i,G2i] = iterator([a2i,b2i,G2i],p,q,g,h)
[a2i,b2i,G2i] = iterator([a2i,b2i,G2i],p,q,g,h)
if Gi == G2i:

if ((bi-b2i) % q) == 0:
return ’fail1’

return (a2i-ai)*inverse mod(bi-b2i,q) % q
return ’fail’

JJ II J I Back

Solutions to Exercises 19

�

JJ II J I Back

Solutions to Exercises 20

Exercise 2(d) Experimenting with the following code should al-
low you to plot graphs with curves of best fit. The line of code
‘model(t)=a*(tb̂)’ finds the best power of the input size and constant

multiplier to match the points on the graph.

x = [(1,3),(2,5),(3,7),(4,9)]
var(’a,b,t’)

model(t)=a*(tb̂)
fit=find fit(x,model,solution dict=True)
plot(model.subs(fit),(t,0,5))+points(x,size=20,color=’red’)

�

JJ II J I Back

Solutions to Exercises 21

Exercise 4(a) The following code implements the Baby-Step Giant-
Step algorithm.

def BSGS(p,q,g,h):
n = floor(sqrt(q))
baby steps = [1]
for j in range(0,n):

baby steps = baby steps + [(baby steps[-1]*g) % p]
v = (baby steps[-1]*g) % p
G = inverse mod(v,p)
H = h % p
if H in baby steps:

return baby steps.index(H)
for i in range(1,n):

H = (H*G) % p
if H in baby steps:

return i*(n+1)+baby steps.index(H)
return ’fail’

�

JJ II J I Back

Solutions to Exercises 22

Exercise 4(b) Experimenting with the following code should al-
low you to plot graphs with curves of best fit. The line of code
‘model(t)=a*(tb̂)’ finds the best power of the input size and constant
multiplier to match the points on the graph.

x = [(1,3),(2,5),(3,7),(4,9)]
var(’a,b,t’)

model(t)=a*(tb̂)
fit=find fit(x,model,solution dict=True)
plot(model.subs(fit),(t,0,5))+points(x,size=20,color=’red’)

�

JJ II J I Back

	 Solutions to Exercises

