
University College London
Department of Computer Science

Cryptanalysis Lab 7

P. Spacek

Copyright c© 2018 peter.spacek@stuba.sk
April 4, 2018 Version 1.0

mailto:peter.spacek@stuba.sk

2

Implementing the Coppersmith’s Algorithm

Write an implementation of the Coppersmith’s method for solving
discrete logarithm. This algorithm was the first algorithm in compu-
tational number theory to have heuristic subexponential complexity
of the form Lq(1/3, c+o(1)). The method uses a polynomial basis for
F2n of the form F2[x]/(F (x)) for F (x) = xn + F1(x) where F1(x) has
very small degree. Let b ∈ N be such that b = cn1/3log(n)2/3 for a
suitable constant c.

This lab was based on ”Mathematics of Public Key Cryptogra-
phy” by Steven Galbraith, available from
https://www.math.auckland.ac.nz/˜sgal018/crypto-book/crypto-book.html

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 1.

(a) Let g = x11 + x7 + x5 + x2 + 1 and
h = x14 + x11 + x10 + x9 + 1

JJ II J I Back

3

be the DLP instance. Our task is to find such m that h = gm

Let F215 = F2[x]/(F (x)), where F (x) = x15 + x + 1. We consider
the subgroup of F ∗215 of order r = 151 (note that (215 − 1)/r =
731 = 217).

(b) First compute in sage n1/3 and n2/3 Wrt n we choose b=3.
(c) Let B = {A(x) ∈ F2[x] : deg(A(x)) ≤ b, A(x) − irreducible}.

Note that #B ≈ 2b/b . Create factor base B. You can list all the
elements in the base.

(d) Now, we do Coppersmith’s method.
Let k ∈ N be such that 2k ≈

√
n/b ≈ 1√

c
(n/log(n))1/3,

let l = dn/2ke ≈
√
nb ≈

√
cn2/3log(n)1/3.

Compute k, l.
(e) Suppose A(x), B(x) ∈ F2[x] are such that deg(A(x)) = dA ≈ b

and deg(B(x)) = dB ≈ b and define C(x) = A(x)xl + B(x).
In practice one restricts to pairs (A(x), B(x)) such that gcd(A(x), B(x)) =
1.
Write function to generate such A(x) and B(x), construct C(x)

(f) The crucial observation is that

JJ II J I Back

4

C(x)2
k

= A(x2k)(x2k)l + B(x2k) ∼= A(x2k)x2kl?nF1(x) + B(x2k)
(modF (x)).

Let D(x) be the right hand hand side of equation.

D(x) = A(x2k)x2kl?nF1(x) + B(x2k)(modF (x)).
We have deg(C(x)) ≤ max{dA + l, dB} ≈ l ≈ n2/3log(n)1/3 and
deg(D(x)) ≤ max{2kdA + (2kl − n) + deg(F1(x)), 2kdB} ≈ 2kb ≈
n2/3log(n)1/3.
Compute D(x).

(g) We have two polynomials C(x),D(x) of degree ≈ n2/3 that we wish
to be b-smooth where b ≈ n1/3log(n)2/3. Write function to test
smoothness over factor base. The function should return false if
polynomial is not smooth, or its decomposition in form of list of
exponents (how many times is the factor base polynomial in the
testing polynomial.) Test polynomials for smoothness over B.

(h) We will also assume that the resulting relations are essentially
random (and so with high probability there is a non-trivial linear
dependence once #B + 1 relations have been collected). Create

relation matrix. Relations have a form of C(x)2
k

= D(x)

JJ II J I Back

5

(i) Having generated enough relations among elements of the factor
base, it is necessary to find some relations involving the elements
g and h of the DLP instance. The easiest way is to find such
exponents i, j of g and h that gi and hj are smooth. This is fast
enough for our subgroup, but may not be easy for larger groups.
Write function for finding such i and j. Add decomposition of gi

and hj to the relation matrix.
(j) Find a non-trivial kernel vector modulo r. Find non zero elements

u and v in two last columns of the kernel matrix. This gives us a
relation:
1 = (gi)u(hj)v With use of math compute m such that h = gm

(k) Heureka! Lets party all night, we have a solution ;)

———————————
rest is optional
——————————————-

Exercise 2.

(a) For generating enough relations among elements of the factor base

JJ II J I Back

6

in real life, it is necessary to find some relations involving the el-
ements g and h of the DLP instance. This is not trivial. You
cannot do it like in the previous example in the real life. All DLP
algorithms having complexity Lq(1/3, c + o(1)) feature a process
called special q-descent that achieves this. The first step is to ex-
press g (respectively, h) as a product

∏
i QiGi(x) of polynomials

of degree at most b1 = n2/3log(n)1/3; this can be done by multi-
plying g (resp. h) by random combinations of elements of B and
factoring. We now have a list of around 2n1/3 < n polynomials
Gi(x) of degree ≈ n2/3 that need to be ’smoothed’ further. Essen-
tially one performs the same sieving as earlier except that A(x)
and B(x) are chosen so that Gi(x)|C(x) = A(x)xl+B(x) (not nec-
essarily with the same value of l or the same degrees for A(x) and

B(x)). Defining D(x) = C(x)2
k

(modF (x)) (not necessarily the
same value of k as before) one hopes that C(x)/G(x) and D(x)
are b-smooth. After sufficiently many trials one has a relation
that expresses Gi(x) in terms of elements of B. Repeating for the
polynomially many values Gi(x) one eventually has the values g
and h expressed in terms of elements of B. One can then do linear

JJ II J I Back

7

algebra modulo the order of g to find integers Z1, Z2 such that
gZ1hZ2 = 1 and the DLP is solved.

Exercise 3.

(a) In exercise 1 we list all the elements for the base. Write function
to generate factor base B

JJ II J I Back

8

Solutions to Exercises

Exercise 1(a)
n=15
F2t15. < a >= GF (2 ∗ ∗n, name =′ a′,modulus = x ∗ ∗n + x + 1)
r=151
g = a ∗ ∗11 + a ∗ ∗7 + a ∗ ∗5 + a ∗ ∗2 + 1
h = a ∗ ∗14 + a ∗ ∗11 + a ∗ ∗10 + a ∗ ∗9 + 1

�

JJ II J I Back

Solutions to Exercises 9

Exercise 1(b)
n13=n**(0.3333333)
print n13
n23=n**(0.6666666)
print n23
b=3

�

JJ II J I Back

Solutions to Exercises 10

Exercise 1(c)
B=[a,a+1,a**2+a+1,a**3+a+1,a**3+a**2+1]

�

JJ II J I Back

Solutions to Exercises 11

Exercise 1(d)
print sqrt(n/b+0.0)
k=1
l=ceil(n/2**k)

�

JJ II J I Back

Solutions to Exercises 12

Exercise 1(g)
Naive solution. Try to find better one:

def is smooth(px,B):
gx=px
exponent list = []
for fx in B:

exponent = 0
while((gx/fx)<(gx)):

gx=gx/fx
exponent = exponent+1

exponent list = exponent list + [exponent]
if gx>1:

return False
return exponent list

�

JJ II J I Back

Solutions to Exercises 13

Exercise 1(h)
One solution would be like this. Try to find better one:

relMat=[]
maxDeg = 2
for p in (0..1):

for q in (0..maxDeg):
for u in (0..1):

for v in (0..maxDeg):
Ax=u + a**v
Bx=p + a**q
Cx=Ax*a**l+Bx
Dx=Cx**(2**k)
if(is smooth(Cx,B)!=false):

if(is smooth(Dx,B)!=false):
relMat=relMat+[list((2**k)*

vector(is smooth(Cx,B))-vector(is smooth(Dx,B)))]
�

JJ II J I Back

Solutions to Exercises 14

Exercise 1(i)
for i in (1..r):

if (is smooth(g**i,B)!=false):
print i, ”: ”,is smooth(g**i,B)
gn=i
relMat=relMat+[is smooth(g**i,B)]
break

for i in (1..r):
if (is smooth(h**i,B)!=false):

print i, ”: ”,is smooth(h**i,B)
hn=i
relMat=relMat+[is smooth(h**i,B)]
break

�

JJ II J I Back

Solutions to Exercises 15

Exercise 1(j)
relMat = matrix(relMat)
M=relMat.kernel().matrix()
print M
for i in M:

if i[-2]!=0:
if i[-1] != 0:

ge= i[-2]*gn% r
he =-i[-1]*hn% r
result = inverse mod(he,r)*ge%r
print result

print g**result==h
�

JJ II J I Back

Solutions to Exercises 16

Exercise 1(k)
buy(drinks, snacks)
for f in flats:

if (f.empty()):
occupate(CryptanalysysCourse.Students())

party(morning)
�

JJ II J I Back

Solutions to Exercises 17

Exercise 3(a)
def get base(b,n):

B=[]
R=ZZ[’a’]
Z=GF(2**(n),’a’)
for c in GF(2**(b+1), ’a’):

if R(c).is irreducible():
B=B+[Z(c)]

return B
�

JJ II J I Back

