
University College London
Department of Computer Science

Cryptanalysis Lab 8

P. Spacek

Copyright c© 2018 peter.spacek@stuba.sk
April 26, 2018 Version 1.0

mailto:peter.spacek@stuba.sk


2

Implementing the Matsumoto Imai (C * )

Our task now is to generate public key in Matsumoto-Imai cryptosys-
tem. We will use construction described in Neal Koblitz: ”Algebraic
Aspects of Cryptography”; (Springer, ACM3, 1998, Chapter 4: ”Hid-
den Monomial Cryptosystems”, pp. 80-102.).
Let x be column vector x = (x1, x2, ..., xn) and y analogicly y =
(y1, y2, ..., yn). We generate two random n x n affine matrices S and
T (T has to be invertible), and two random vectors vs and vt. We
compute two vectors u and v:

u = (S ∗ x) + vs

and
v = (T ∗ y) + vt

More pricesly we want to compute y from this equation:

y = T−1 ∗ (v − vt)

The relation between u and v is given by equation:

v = uq
θ

∗ u
JJ II J I Back



3

In practice we do it like this:

u′ = (ui ∗ bq
θ

i ) ∗ (ui ∗ bi)

Exercise 1.

(a) Copy this code into sage:

q=2; n=5; th=3

K=GF(q)

P=PolynomialRing(K, ’x’, n)

P.inject_variables()

K2=GF(q^n, ’x’)

fx=K2.modulus()

l=var(’x%i’ % n)

MVP=PolynomialRing(K, ’x’, n+1)

MVP.inject_variables()

xn=MVP(l)

JJ II J I Back



4

with localvars(fx.parent(), [l]):

fx=MVP(fx)

(b) First, we are going to write vector x (message). Write Sage code
for column vector mes = (x1, x2, ..., xn)

(c) We need to define the basis. Write code in Sage for definition of
the base.

(d) Now we try to test if qθ and qn−1 are comprime. We need this
condition to be able to invert qθ (decryption). Write Sage code
for this test.

(e) We generate two random n x n affine matrices S and T (T has to
be invertible), and two random vectors vs and vt of length n. Do
it in Sage.

(f) Compute u = (S ∗mes) + vs in Sage.
(g) Compute u′ in Sage. Note that u′ is computed in this way:

u′ = (ui ∗ bq
θ

i ) ∗ (ui ∗ bi). Don’t forget that we are in the field, so
use mod f(x). This is where we get quadratic equation.

(h) Because the relation between u and v is given by equation v =

uq
θ ∗ u, we need to extract v from u′ (back from the basis). Do it

JJ II J I Back



5

in Sage.
(i) The last step is to calculate y (public key) from v. Note that

v = (T ∗ y) + vt. Print the result. Nice, isn’t it?

Hidden Field Equations

Rewrite previous example to more general HFE crypto-system. Read
this: https://en.wikipedia.org/wiki/Hidden_Field_Equations

Exercise 2.

(a) What part do we need to change to be able to use previous code
for HFE?

(b) Change the code.

JJ II J I Back

https://en.wikipedia.org/wiki/Hidden_Field_Equations


6

Solutions to Exercises

Exercise 1(b)

MSm = MatrixSpace(P,n,1)

mes=[]

for i in (0..n-1):

mes.append(var(’x%i’ % i))

mes=MSm(Matrix(n,1,mes))

�

JJ II J I Back



Solutions to Exercises 7

Exercise 1(c)

b=[]

for i in (0..n-1):

b.append(xn^i)

�

JJ II J I Back



Solutions to Exercises 8

Exercise 1(d)

h=(q^th)+1

if (gcd(h,q^n-1)!=1):

print "error"

hp=inverse_mod(h,q^n-1)

�

JJ II J I Back



Solutions to Exercises 9

Exercise 1(e)

MSnn_2 = MatrixSpace(K,n,n)

S=MSnn_2.random_element()

T=MSnn_2.random_element()

while (T.is_invertible()==false):

T=MSnn_2.random_element()

MSn1_2 = MatrixSpace(K,n,1)

vs=MSn1_2.random_element()

vt=MSn1_2.random_element()

�

JJ II J I Back



Solutions to Exercises 10

Exercise 1(f)

u=(S*mes)+vs

�

JJ II J I Back



Solutions to Exercises 11

Exercise 1(g)

upa=0

upb=0

for i in (0..n-1):

upa=upa+u[i]*Bas[i]

upb=upb+u[i]*Bas[i]^(q^th)

up=(upa*upb%fx)

�

JJ II J I Back



Solutions to Exercises 12

Exercise 1(h)

v=[]

for i in (1..n):

v.append([])

tmp=expand(up)

for i in (1..n-1):

v[i] = P(expand(up).coefficient(xn^i))

tmp=tmp-v[i]*xn^i

v[0] = P(tmp)

v=Matrix(n,1,v)

�

JJ II J I Back



Solutions to Exercises 13

Exercise 1(i)

y= T.inverse()*(v-vt)

print y

�

JJ II J I Back



Solutions to Exercises 14

Exercise 2(a)
The difference is in the polynomial used. Vector v is no longer

equal to uq
θ+1 Instead, v = P (u) where

P (u) =
∑

ci ∗ uq
si+qti

�

JJ II J I Back



Solutions to Exercises 15

Exercise 2(b)
This is a solution for simple P (x) with one term.

upa=0

upb=0

for i in (0..n-1):

upa=c*(upa+u[i]*Bas[i]^(q^s) )

upb=upb+u[i]*Bas[i]^(q^t)

up=(upa*upb%fx)

To be consistent with the definition, you need to do this in loop for
every term up to degree d and sum it. �

JJ II J I Back


	 Solutions to Exercises



