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The LLL Algorithm

Given a set of basis vectors S = x1, . . . ,xn with integer entries, we can
form a lattice L by taking all integer linear combinations of vectors
in S. The picture below shows a lattice generated by vectors in Z2.
The same lattice can be generated by u1,u2, or by v1,v2.

The LLL algorithm takes a collection of ‘bad’ basis vectors for
lattice, such as v1,v2, and tries to generate a set of ‘good’ basis vectors
for the lattice, such as u1,u2, which are much shorter, and close to
being perpendicular.
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In the next two questions, you will use the LLL algorithm to solve
problems related to cryptography.

A Knapsack-Based Hash Function

We can try to construct a hash function based on the hardness of
solving the Knapsack problem.

Let a1, . . . , an be positive integers. Given a positive integer s, we
might ask whether there exist x1, . . . , xn ∈ {0, 1} such that

∑n
i=1 aixi =

s. This is a special case of the knapsack problem, and it is NP-
complete, which suggests that the function (x1, . . . , xn) 7→

∑n
i=1 aixi

might be difficult to invert, and have some of the properties of a good
hash function.

Concretely, we create a hash function by choosing random values
for the a1, . . . , an. We hash values (x1, . . . , xn) ∈ {0, 1}n to {0, 1}k by
computing s =

∑n
i=1 aixi, and then taking the binary digits of s as

output.
Click on the green letter before each question to get a full solution.

Click on the green square to go back to the questions.
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Exercise 1.

(a) Implement a function ‘Parameters’ which takes integers n, µ as
input, and generates n random µ-bit integers a1, . . . , an for use in
a knapsack-based hash function.

(b) Create a function ‘KnapsackHash’ which implements the knapsack-
based hash function described above. Your function should take
the output of part a) and a value to hash, and produce a hash
value.

(c) Consider the lattice generated by the rows of the following matrix,
for some large value K.

Ka1 1 0 · · · 0
Ka2 0 1 · · · 0

...
...

...
. . .

...
Kan 0 0 · · · 1


How might finding a short vector in this lattice help to find a

collision in the knapsack hash function?
Hint: What happens if we find a short vector with first com-
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ponent zero, and the other components 1 or −1?
(d) The LLL algorithm can be applied to a matrix M by writing

M.LLL(). On input a square matrix of row vectors, the LLL algo-
rithm produces a new matrix, where the first row is a short vector
in the lattice. Write a program which uses the LLL algorithm to
break a knapsack hash function with params = Parameters(n,mu)

for (n,mu) = (10, 10), (20, 20), (40, 40). What are the largest val-
ues of (n,mu) for which your program finds a collision?

Finding Polynomials with Small Coefficients from Approxi-
mate Roots

Taken from Algorithmic Cryptanalysis, Chapter 13, Exercise 1:
Consider the floating point number:

x = 8.44311610583794550393138517.

Show that x is a close approximation of a real root of a polynomial of
degree 3, with integer coefficients bounded by 20 (in absolute value).

Click on the green letter before each question to get a full solution.
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Click on the green square to go back to the questions.

Exercise 2.

(a) With the collision matrix from the previous question in mind,
design a matrix containing the powers of x, where a short vector
in the lattice is likely to produce a polynomial of degree 3, with x
as a root.

(b) Apply the LLL algorithm to your matrix to find the polynomial.
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Solutions to Exercises

Exercise 1(a) The following code implements the ‘Parameters’ func-
tion.

def Parameters(n,mu):
A = list();
for i in range(0,n):

A.append(randint(0,2**mu-1))
return [vector(A),n,mu]

�
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Solutions to Exercises 8

Exercise 1(b) The following code implements the knapsack hash
function.

def KnapsackHash(params,x):
A = params[0]
n = params[1]
mu = params[2]
k = ceil(log(n,2))+mu
if n != len(x):

return ”The input vectors are not the same length!”
z = 0;
for i in range(0,len(x)):

z = z + A[i]*x[i];
z = z.bits()
while len(z) < k:

z.append(0)
return z

�
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Solutions to Exercises 9

Exercise 1(c) Following the hint, since K is large, short vectors in
the lattice are likely to have first component equal to zero. Otherwise,
the first component would be a large number, as a multiple of K.
This means that a short vector is likely to involve finding a linear
combination of the ai which is equal to zero. The other components
of the vector tell us the coefficients in this linear combination. If the
other components are all 1 or −1, then we can rearrange the linear
combination to find two binary inputs which hash to the same output
value. �
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Solutions to Exercises 10

Exercise 1(d) The following code implements a collision finder.

def BreakKnapsackHash(params,K):
#Choose large positive integer K

A = params[0]
n = len(A)
B = matrix(A).transpose()
C = matrix.identity(n)
M = block matrix([[K*B,C]])
L = matrix(list(M.LLL()))
L = L[0]

if L[0] != 0:
return ’fail’

L = list(L)
L.remove(0)
for entry in L:

#(continued on next page)
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Solutions to Exercises 11

if abs(entry) > 1:
return ’fail’

X1 = matrix([[abs(L[i]>0) for i in range(0,len(L))]])
X2 = matrix([[abs(L[i]<0) for i in range(0,len(L))]])
return matrix(list(block matrix([[X1],[X2]])))

�
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Solutions to Exercises 12

Exercise 2(a) 
bKe 1 0 0 0
bKxe 0 1 0 0
bKx2e 0 0 1 0
bKx3e 0 0 0 1


Apply the LLL algorithm to the lattice. The first element in our
reduced basis has the form (ε, a0, a1, a2, a3), where ε = a0bKe +
a1bKxe+a2bKx2e+a3bKx3e and ε is quite small. Dividing by K, this
suggests that x is a close approximation to a root of the polynomial
with coefficients ai. �
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Solutions to Exercises 13

Exercise 2(b) Section 13.1.2.2 of Algorithmic Cryptanalysis suggests
using K ≥ (max |ai|)2d where d is the degree of the polynomial. So
in our example we can take K = (20)6 = 64 × 106. This gives us a
matrix: 

64000000 1 0 0 0
540359431 0 1 0 0
4562317413 0 0 1 0
38520175629 0 0 0 1


Apply the LLL algorithm. For your own sanity, use SAGE rather

than trying to do LLL by hand. Create a matrix A as above, do
A.LLL() and look at the first row. This is (−3,−10,−11,−7, 1), cor-
responding to x3− 7x2− 11x− 10. Check for yourself that x3− 7x2−
11x− 10 is extremely close to 0. �
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