University College London Department of Computer Science ## Cryptanalysis Lab 3 J. P. Bootle ### Generating Discrete Logarithm Instances Recall that a prime p is called a 'strong prime' if p = 2q + 1, where q is also prime. The following function generates random discrete logarithm instances. On input n, the function first finds the smallest strong prime p that is greater than n. Thus, \mathbb{Z}_p^* has a subgroup of order q. Finally, the function generates two random elements g,h of the subgroup, and outputs [p,q,g,h]. ``` def dlog_gen(n): p = next_prime(n) while not is_prime(floor((p-1)/2)): p = next_prime(p) x = randint(1,p-1) y = randint(1,p-1) g = x*x % p h = y*y % p return [p,floor((p-1)/2),g,h] ``` Copy and paste the code into SAGE. This function will be used to generate discrete logarithm instances for the following questions. ### Modular Exponentiation The following function performs modular exponentiation. It computes $a^k \mod n$ and outputs the answer. ``` \begin{array}{l} \operatorname{def} \ \operatorname{MyPower}(a,k,n) \colon \\ K = \operatorname{bin}(k)[2 \colon] \\ A = a \ \% \ n \\ c = 1 \\ \text{if } \operatorname{int}(K[0]) = = 1 \colon \\ c = (c^*A) \ \% \ n \\ \text{for } j \ \operatorname{in \ range}(1,\operatorname{len}(K)) \colon \\ c = (c^{\wedge}2) \ \% \ n \\ \text{if } \operatorname{int}(K[j]) = = 1 \colon \\ c = (c^*A) \ \% \ n \\ \text{return } c \end{array} ``` 44 Copy and paste the code into SAGE. You may use this function to check your solutions to discrete logarithm instances. ## Implementing the Pollard-Rho Algorithm Click on the green letter before each question to get a full solution. Click on the green square to go back to the questions. #### Exercise 1. - (a) Write a function iterator which implements the iterative function required for the Pollard-Rho algorithm for the discrete logarithm problem. This is part of the algorithm given on page 18 of the slides on DLOG and Factoring. The function should take inputs [a,b,G] and p,q,g,h, where $G=g^ah^b$, and output the new values [a',b',G'] according to the iterative function. - (b) Write a function pollard_rho which implements the low-memory version of the Pollard-Rho algorithm. The function should take inputs p, q, g, h as produced by the DLOG instance generator, and output $k \in \{0, 1, \ldots, q-1\}$ such that $g^k = h \mod p$. Run the algorithm for a fixed number of iterations. You may wish to struc- ture your code as follows. - Definition of the initial [a, b, G] for the iteration. - Set the number of iterations to do. - Main loop using the iterative function. - At each step of the main loop, check for collisions. - \bullet Return the correct value of k or output 'Fail'. - (c) According to the analysis of the running time of the Pollard-Rho algorithm, how many iterations should we expect to use before the algorithm succeeds in finding a collision? - (d) Generate DLOG instances with dlog_gen(n) for a range of large n. Using the timeit command, test how long your program takes to solve these instances. Plot a graph of the time taken to solve each instance against the size of the group in the instance, using the plot command or otherwise. Compare with your results from the Baby-Step Giant-Step algorithm. Which of your implementations is faster? - (e) (Bonus Question) The running time of the Pollard-Rho algorithm depends on the iteration function behaving like a random function. Modifying the iteration function can improve the running time of the algorithm in practice. Modify your functions iterator and pollard_rho to work as follows. Does this improve the running time of the algorithm? - pollard_rho generates $g' = g^{a'}h^{b'}$ and $g'' = g^{a''}h^{b''}$, where a', a'', b', b'' are chosen uniformly at random from $\{0, 1, \ldots, q-1\}$. - iterator takes g', g'', a', a'', b', b'' as additional inputs. - For $0 \le G < p/5$, iterator maps [a, b, G] to [a+1, b, G*g]. - For $p/5 \le G < 2p/5$, iterator maps [a,b,G] to [a,b+1,G*h]. - For $2p/5 \le G < 3p/5$, iterator maps [a, b, G] to $[2a, 2b, G^2]$. - For $3p/5 \le G < 4p/5$, iterator maps [a,b,G] to [a+a',b+b',G*g']. - For $4p/5 \le G < p$, iterator maps [a,b,G] to [a+a'',b+b'',G*g'']. ## Implementing the Baby-Step Giant-Step Algorithm Click on the green letter before each question to get a full solution. Click on the green square to go back to the questions. #### Exercise 2. (a) Write a function 'BSGS' which implements the Baby-Step Giant-Step algorithm. The function should take inputs p,q,g,h as produced by the DLOG instance generator, and output $k \in \{0,1,\ldots,q-1\}$ such that $g^k = h \mod p$. You may wish to structure your code as follows. - Calculate the sizes of the baby steps and the giant steps. - Compute all of the baby steps, and store them in a list. - Compute giant steps until you get an item in the list. - Return the correct value of k. - (b) Generate DLOG instances with dlog_gen(n) for a range of large n. Using the timeit command, test how long your program takes to solve these instances. Plot a graph of the time taken to solve each instance against the size of the group in the instance, using the plot command or otherwise. What shape graph do you expect to see? #### Solutions to Exercises Exercise 1(a) The following code implements the iterative function. def iterator(triple,p,q,g,h): $$[a,b,G] = \text{triple}$$ if $G < p/3$: return $[(a+1) \% q, b, (G*g) \% p]$ elif $G > 2*p/3$: return $[a,(b+1) \% q, (G*h) \% p]$ else: return $[(2*a)\%q, (2*b)\%q, (G*G) \% p]$ Exercise 1(b) The following code implements the Pollard-Rho algorithm. ``` def pollard_rho(p,q,g,h): n = floor(sqrt(q)) ai = 1 bi = 0 Gi = g \% p a2i = 1 b2i = 0 G2i = g \% p for k in range(1,n): [ai,bi,Gi] = iterator([ai,bi,Gi],p,q,g,h) [a2i,b2i,G2i] = iterator([a2i,b2i,G2i],p,q,g,h) [a2i,b2i,G2i] = iterator([a2i,b2i,G2i],p,q,g,h) if Gi == G2i: if ((bi-b2i) \% q) == 0: return 'fail1' return (a2i-ai)*inverse_mod(bi-b2i,q) % q return 'fail' ``` Solutions to Exercises 11 Exercise 1(d) Experimenting with the following code should allow you to plot graphs with curves of best fit. The line of code 'model(t)= $a^*(t\hat{b})$ ' finds the best power of the input size and constant $$x = [(1,3),(2,5),(3,7),(4,9)]$$ $var('a,b,t')$ $model(t)=a^*(t\hat{b})$ multiplier to match the points on the graph. fit=find_fit(x,model,solution plot(model.subs(fit),(t,0,5))- Exercise 2(a) The following code implements the Baby-Step Giant-Step algorithm. ``` def BSGS(p,q,g,h): n = floor(sqrt(q)) baby_steps = [1] for j in range(0,n): baby_steps = baby_steps + [(baby_steps[-1]*g) \% p] v = (baby_steps[-1]*g) \% p G = inverse_mod(v,p) H = h \% p if H in baby_steps: return baby_steps.index(H) for i in range(1,n): H = (H*G) \% p if H in baby_steps: return i^*(n+1)+baby_steps.index(H) return 'fail' ``` 44 Exercise 2(b) Experimenting with the following code should allow you to plot graphs with curves of best fit. The line of code 'model(t)= $a^*(tb)$ ' finds the best power of the input size and constant multiplier to match the points on the graph. ``` x = [(1,3),(2,5),(3,7),(4,9)] var('a,b,t') model(t)=a*(tb) fit=find_fit(x,model,solution_dict=True) plot(model.subs(fit),(t,0,5))+points(x,size=20,color='red') ```