
University College London
Department of Computer Science

Cryptanalysis Lab 3

J. P. Bootle

Copyright c© 2016 jonathan.bootle.14@ucl.ac.uk
May 7, 2018 Version 2.0

mailto:jonathan.bootle.14@ucl.ac.uk


2

Generating Discrete Logarithm Instances

Recall that a prime p is called a ‘strong prime’ if p = 2q + 1, where q
is also prime.

The following function generates random discrete logarithm in-
stances. On input n, the function first finds the smallest strong prime
p that is greater than n. Thus, Z∗p has a subgroup of order q. Finally,
the function generates two random elements g, h of the subgroup, and
outputs [p, q, g, h].

def dlog gen(n):
p = next prime(n)
while not is prime( floor((p-1)/2) ):

p = next prime(p)
x = randint(1,p-1)
y = randint(1,p-1)
g = x*x % p
h = y*y % p
return [p,floor( (p-1)/2 ),g,h]

JJ II J I Back



3

Copy and paste the code into SAGE. This function will be used
to generate discrete logarithm instances for the following questions.

Modular Exponentiation

The following function performs modular exponentiation. It computes
ak mod n and outputs the answer.

def MyPower(a,k,n):
K = bin(k)[2:]
A = a % n
c = 1
if int(K[0])==1:

c = (c*A) % n
for j in range(1,len(K)):

c = (c∧2) % n
if int(K[j])==1:

c = (c*A) % n
return c

JJ II J I Back



4

Copy and paste the code into SAGE. You may use this function
to check your solutions to discrete logarithm instances.

Implementing the Pollard-Rho Algorithm

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 1.

(a) Write a function iterator which implements the iterative func-
tion required for the Pollard-Rho algorithm for the discrete log-
arithm problem. This is part of the algorithm given on page 18
of the slides on DLOG and Factoring. The function should take
inputs [a, b,G] and p, q, g, h, where G = gahb, and output the new
values [a′, b′, G′] according to the iterative function.

(b) Write a function pollard rho which implements the low-memory
version of the Pollard-Rho algorithm. The function should take
inputs p, q, g, h as produced by the DLOG instance generator, and
output k ∈ {0, 1, . . . , q − 1} such that gk = h mod p. Run the
algorithm for a fixed number of iterations. You may wish to struc-

JJ II J I Back



5

ture your code as follows.

• Definition of the initial [a, b,G] for the iteration.
• Set the number of iterations to do.
• Main loop using the iterative function.
• At each step of the main loop, check for collisions.
• Return the correct value of k or output ‘Fail’.

(c) According to the analysis of the running time of the Pollard-Rho
algorithm, how many iterations should we expect to use before
the algorithm succeeds in finding a collision?

(d) Generate DLOG instances with dlog gen(n) for a range of large
n. Using the timeit command, test how long your program takes
to solve these instances. Plot a graph of the time taken to solve
each instance against the size of the group in the instance, using
the plot command or otherwise. Compare with your results from
the Baby-Step Giant-Step algorithm. Which of your implementa-
tions is faster?

(e) (Bonus Question) The running time of the Pollard-Rho algorithm
depends on the iteration function behaving like a random function.

JJ II J I Back



6

Modifying the iteration function can improve the running time of
the algorithm in practice. Modify your functions iterator and
pollard rho to work as follows. Does this improve the running
time of the algorithm?
• pollard rho generates g′ = ga

′
hb′ and g′′ = ga

′′
hb′′ , where

a′, a′′, b′, b′′ are chosen uniformly at random from {0, 1, . . . , q−
1}.
• iterator takes g′, g′′, a′, a′′, b′, b′′ as additional inputs.
• For 0 ≤ G < p/5, iterator maps [a, b,G] to [a + 1, b, G ∗ g].
• For p/5 ≤ G < 2p/5, iterator maps [a, b,G] to [a, b+ 1, G ∗
h].
• For 2p/5 ≤ G < 3p/5, iterator maps [a, b,G] to [2a, 2b,G2].
• For 3p/5 ≤ G < 4p/5, iterator maps [a, b,G] to [a+ a′, b+
b′, G ∗ g′].
• For 4p/5 ≤ G < p, iterator maps [a, b,G] to [a + a′′, b +
b′′, G ∗ g′′].

JJ II J I Back



7

Implementing the Baby-Step Giant-Step Algorithm

Click on the green letter before each question to get a full solution.
Click on the green square to go back to the questions.

Exercise 2.

(a) Write a function ‘BSGS’ which implements the Baby-Step Giant-
Step algorithm. The function should take inputs p, q, g, h as pro-
duced by the DLOG instance generator, and output k ∈ {0, 1, . . . , q−
1} such that gk = h mod p.
You may wish to structure your code as follows.
• Calculate the sizes of the baby steps and the giant steps.
• Compute all of the baby steps, and store them in a list.
• Compute giant steps until you get an item in the list.
• Return the correct value of k.

(b) Generate DLOG instances with dlog gen(n) for a range of large
n. Using the timeit command, test how long your program takes
to solve these instances. Plot a graph of the time taken to solve
each instance against the size of the group in the instance, using
the plot command or otherwise. What shape graph do you expect

JJ II J I Back



8

to see?

JJ II J I Back



9

Solutions to Exercises

Exercise 1(a) The following code implements the iterative function.
def iterator(triple,p,q,g,h):

[a,b,G] = triple
if G < p/3:

return [(a+1) % q , b,(G*g) % p]
elif G > 2*p/3:

return [a,(b+1) % q,(G*h) % p]
else:

return [(2*a)%q,(2*b)%q,(G*G) % p]

�

JJ II J I Back



Solutions to Exercises 10

Exercise 1(b) The following code implements the Pollard-Rho algo-
rithm.

def pollard rho(p,q,g,h):
n = floor(sqrt(q))
ai = 1
bi = 0
Gi = g % p
a2i = 1
b2i = 0
G2i = g % p
for k in range(1,n):

[ai,bi,Gi] = iterator([ai,bi,Gi],p,q,g,h)
[a2i,b2i,G2i] = iterator([a2i,b2i,G2i],p,q,g,h)
[a2i,b2i,G2i] = iterator([a2i,b2i,G2i],p,q,g,h)
if Gi == G2i:

if ((bi-b2i) % q) == 0:
return ’fail1’

return (a2i-ai)*inverse mod(bi-b2i,q) % q
return ’fail’

JJ II J I Back



Solutions to Exercises 11

�

JJ II J I Back



Solutions to Exercises 12

Exercise 1(d) Experimenting with the following code should al-
low you to plot graphs with curves of best fit. The line of code
‘model(t)=a*(tb̂)’ finds the best power of the input size and constant

multiplier to match the points on the graph.

x = [(1,3),(2,5),(3,7),(4,9)]
var(’a,b,t’)

model(t)=a*(tb̂)
fit=find fit(x,model,solution dict=True)
plot(model.subs(fit),(t,0,5))+points(x,size=20,color=’red’)

�

JJ II J I Back



Solutions to Exercises 13

Exercise 2(a) The following code implements the Baby-Step Giant-
Step algorithm.

def BSGS(p,q,g,h):
n = floor(sqrt(q))
baby steps = [1]
for j in range(0,n):

baby steps = baby steps + [(baby steps[-1]*g) % p]
v = (baby steps[-1]*g) % p
G = inverse mod(v,p)
H = h % p
if H in baby steps:

return baby steps.index(H)
for i in range(1,n):

H = (H*G) % p
if H in baby steps:

return i*(n+1)+baby steps.index(H)
return ’fail’

�

JJ II J I Back



Solutions to Exercises 14

Exercise 2(b) Experimenting with the following code should al-
low you to plot graphs with curves of best fit. The line of code
‘model(t)=a*(tb̂)’ finds the best power of the input size and constant
multiplier to match the points on the graph.

x = [(1,3),(2,5),(3,7),(4,9)]
var(’a,b,t’)

model(t)=a*(tb̂)
fit=find fit(x,model,solution dict=True)
plot(model.subs(fit),(t,0,5))+points(x,size=20,color=’red’)

�

JJ II J I Back


	 Solutions to Exercises



