Cryptanalysis (COMPGA18/COMPM068) Public Key Answers

Mary Maller \& Nicolas T. Courtois

1 Index Calculus

Working in the group \mathbb{Z}_{2099}^{*}, this question uses index calculus to solve an instance of the discrete \log problem. We shall show a method to find $\log _{11} 793 \bmod 2099$. It may help to note that because 11 generates \mathbb{Z}_{2099}^{*}, we have that the function $\log _{11}: \mathbb{Z}_{2099}^{*} \mapsto \mathbb{Z}_{2098}^{+}$is an isomorphism. This means that it is invertible and that for all $x, y \in \mathbb{Z}_{2099}^{*}, \log _{11}(x \cdot y)=\log _{11}(x)+\log _{11}(y)$.
(i) (a) Using the factor () command in Sage, check whether 2099 is prime.
(b) Working modulo 2099, use Sage to find which of the following is false:
i. $11^{9}=2^{5} 3^{3} 5^{7}$
ii. $11^{44}=2^{4} 3^{3} 5^{4}$
iii. $11^{49}=2^{5} 3^{6} 5^{5}$
iv. $11^{52}=2^{8} 3^{6} 5^{2}$
v. $11^{73}=2^{3} 3^{3} 5^{0}$

To calculate $11^{4} 4$ in Sage do the following:

$$
\begin{array}{lc}
\text { sage }: & K=\text { IntegerModRing(2099) } \\
\text { sage }: & K(11)^{\wedge}(44) .
\end{array}
$$

(c) Using 3 of the above equations, find a system of linear equations over \mathbb{Z}_{2098} which involve $L_{2}=\log _{11}(2), L_{3}=\log _{11}(3), L_{5}=\log _{11}(5)$ and are linearly independent modulo 2 .
(ii) We now wish put this into matrix form and then invert the matrix. An issue here is that Z_{2098} is not a field i.e its non-zero elements do not form a group under multiplication. Gaussian elimination can be difficult over fields as if there is a non-invertible coefficient, you would have to find a new system of linear equations. To deal with this issue, we shall solve the system of equations modulo 1049 and modulo 2 , and then apply the Chinese Remainder Theorem to get the solution modulo 2098.
(a) Is 1049 prime?
(b) Write the system of equations from part i) in matrix form (i.e. $M \mathbf{L}=$ \mathbf{v} for M a matrix and \mathbf{L}, \mathbf{v} vectors).
(c) Calculate $M^{-1} \bmod 2$. Verify your answer in Sage using the following commands.

$$
\begin{array}{lc}
\text { sage }: & M=\text { matrix }([[1,1,1],[0,1,0],[1,1,0]]) ; \\
\text { sage }: & M^{\wedge}(-1)
\end{array}
$$

(d) $M^{-1} \bmod 1049$ can be calculated in Sage as follows.

$$
\begin{array}{lc}
\text { sage }: & R=\text { Integer } \operatorname{ModRing}(1049) \\
\text { sage }: & R 33=\text { MatrixSpace }(R, 3,3) \\
\text { sage }: & N=R 33([[\cdot, \cdot, \cdot],[\cdot, \cdot, \cdot],[\cdot, \cdot, \cdot]]) ; \\
\text { sage }: & N I=N^{\wedge}(-1) \\
\text { sage }: & N I
\end{array}
$$

Verify that

$$
M^{-1} \quad \bmod 1049=\left(\begin{array}{ccc}
4 & -7 & 3 \\
-4 & 7 & 347 \\
-1 & 2 & -1
\end{array}\right)
$$

(e) Find L_{2}, L_{3}, L_{5} modulo 1049 and modulo 2 respectively either either by hand or using Sage. Multiplying a vector \mathbf{v} by a matrix $N I$ in Sage can be done in the following manner:

$$
\begin{array}{lc}
\text { sage }: & R 31=\text { MatrixSpace }(R, 3,1) \\
\text { sage }: & v=R 31([\cdot, \cdot, \cdot]) ; \\
\text { sage }: & N I * v
\end{array}
$$

(iii) Given that $1 * 1049-524 * 2=1$, use the Chinese Remainder Theorem to find L_{2}, L_{3}, L_{5} modulo 2098. We thus have that $11^{L_{i}}=i \bmod 2099$. Check your answers in Sage.
(iv) Given that $793 \cdot 11^{32} \bmod 2099=480$, find the prime factorisation of $793 \cdot 11^{32} \bmod 2099$.
(v) Use your answers from parts iii) and iv) to find $\log _{11}(793 \bmod 2099)$.

We have thus found ans such that $11^{\text {ans }}=793$.
Hint: $\log _{11}(793 \bmod 2099) \in \mathbb{Z}_{2098}^{+}$.

Answer:

(i) (a) 2099 is prime.
(b) (iii) is false.
(c) $\quad 9=5 L_{2}+3 L_{3}+7 L_{5}$.

- $44=2 L_{2}+3 L_{3}+5 L_{5}$.
- $73=3 L_{2}+3 L_{3}+0 L_{5}$.
(ii) (a) Yes.
(b)

$$
\left(\begin{array}{ccc}
5 & 3 & 7 \\
4 & 3 & 4 \\
3 & 3 & 0
\end{array}\right)\left(\begin{array}{l}
L_{2} \\
L_{3} \\
L_{5}
\end{array}\right)=\left(\begin{array}{c}
9 \\
44 \\
73
\end{array}\right) .
$$

(c)

$$
M^{-1} \bmod 2=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(d) N / A
(e)

$$
\left(\begin{array}{l}
L_{2} \\
L_{3} \\
L_{5}
\end{array}\right)=\left(\begin{array}{c}
996 \\
427 \\
6
\end{array}\right) \quad \bmod 1049 \text { and }\left(\begin{array}{l}
L_{2} \\
L_{3} \\
L_{5}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \bmod 2
$$

(iii) To find x such that $x=a \bmod 1049$ and $x=b \bmod 2$ we first find $1_{1049}=(-524) * 2 \bmod 2098=1050$ and $1_{2}=1 * 1049 \bmod 2098=1049$. Then $x=a * 1_{1049}+b * 1_{2} \bmod 2098$. Hence

$$
L_{2}=996 * 1050+1 * 1049 \bmod 2098=2045
$$

Using the same method we get that

$$
\left(\begin{array}{l}
L_{2} \\
L_{3} \\
L_{5}
\end{array}\right)=\left(\begin{array}{c}
2045 \\
1476 \\
6
\end{array}\right)
$$

(iv)

$$
480=2^{5} \times 3 \times 5
$$

(v)

$$
\begin{gathered}
793 \times 11^{32}=2^{5} \times 3 \times 5 \quad \bmod 2099 \\
\Longrightarrow \log _{11}(793)+32=5 L_{2}+L_{3}+L_{5} \quad \bmod 2098 \\
\Longrightarrow \log _{11}(793)=5 \times 2045+1476+6-32 \quad \bmod 2098 \\
\Longrightarrow \log _{11}(793)=1185
\end{gathered}
$$

