
How To Generate E2 Polynomials using
SageMath

Nicolas T. Courtois1, Peter Spacek2, and Students1

1 Computer Science department, University College London, UK
2 Slovak University of Technology

Abstract. Based on earlier ideas by Matsumoto-Imai and HFE a new
post-quantum public key cryptosystem called Two-Face was proposed in
2017 cf. [13]. A paper will appear in Africacrypt 2018. TBC.
In this paper, we study the choice of an internal hidden univariate poly-
nomial in all these cryptosystems. We show how to implement and test
the security of these cryptosystems with SageMath software. We show
that many interesting choices have low regularity degree and therefore
are insecure. We present some new candidates which have higher regu-
larity degree and therefore seem more secure.

Key Words: applied cryptography, digital signatures, post-quantum
crypto, HFE, Matsumoto-Imai, TwoFace, permutation polynomials

Note. This paper is work in progress and was written as a tutorial for
UCL students doing GA18 Cryptanalysis project PQ.

2 Nicolas T. Courtois1, Peter Spacek2, and Students1

1 Multivariate Cryptography

1.1 Matsumoto-Imai vs. RSA

The Matsumoto-Imai public key cryptosystem, also known as C∗ or MI,
is one quite old public key cryptosystem proposal first introduced at Eu-
rocrypt’88 [7, 5, 8]. It is based on a hidden univariate polynomial trans-
formation, which can be for example x 7→ x3. Or more generally on a

power of the form x 7→ xq
k+ql for finite fields of type GF (qn) where q is

a small power of a prime. A popular choice is q = 2 or q = 256.
Let us compare MI to RSA. In both cases, we can have the same cube
function

E1 : x 7→ x3.

However in MI instead of being over a ring of numbers modulo some N
like with RSA, is over a finite field, for example, GF (280). The order
of the multiplicative group of GF (280) is known and therefore in many
cases, such a power function over a finite field is, unlike in RSA, easily
invertible [and the inverse is typically also another power function].
In RSA this univariate polynomial is known to the attacker and the fac-
tors are secret. In MI can be further “obfuscated” and does no longer re-
semble a univariate polynomial. In MI the polynomial will be “concealed”
(cf. [7, 8]) and transformed into a set of multivariate quadratic polyno-
mial functionsGF (q)n → GF (q)n. There are two additionalGF (q)-affine
transformations S and T in GF (q)n → GF (q)n and we consider a com-
position:

F1 = T ◦ E′1 ◦ S

where E′1 is the original polynomial E1 transformed into n quadratic
equations with n variables over GF (q) and F1 will become the public
key. Thus, Matsumoto and Imai construct their public key cryptosystem,
see [7, 8, 5] for more details.

1.2 Cryptanalysis of Matsumoto-Imai

At Crypto’95, Jacques Patarin presents an attack on MI. He shows that
there exist a bi-linear or rather a bi-affine set of polynomial equations

F2(x1, x2, . . . ; y1, y2, . . .)

such that if we substitute y we get a system which is linear in the xi.
Thus the cryptosystem is broken, see [5, 8]. With conventions used in [3,
2] we say that MI admit equations of type XY . We would call type xy
bi-linear equations and type XY bi-affine equations. From here there are
two major ways to break MI:

A We recover the equations F2() (by interpolation and linear algebra)
and MI can be broken by substitution of y in F2() and solving linear
equations! A is an indirect and not very popular method, with pre-
computation. This is how MI was broken for the first time [7] and
how HFE was first broken [2].

Title Suppressed Due to Excessive Length 3

B Do computations in the ideal generated by equations F1() directly.
Once the output y is known we can multiply these equations by vari-
ables and obtain new equations of degree 3. Then due to the existence
of F2(), but without computing F2() directly, so-called degree falls
are obtained: some new polynomials of degree 2 are generated. We
repeat this process and the number of linearly independent poly-
nomials of degree 2 grows and grows, and, eventually, the degree
falls to 1, linear polynomials are also generated. B is a direct and
more popular method which has no pre-computation and numerous
software implementations.

Typically what happens in method B is that never during the whole
computation the degree will exceed 3. In modern algebraic cryptanalysis
vocabulary, we say that F1() = y has a degree of regularity 3. In rare
cases, the process could stop [or rather generate only the same equations
again] and it could be necessary to generate polynomials of higher degree
> 3.
Cost. In general Method A is cheaper than Method B if we ignore the
cost of pre-computing the relations F2(x1...y1...). Method A also reveals
that many computations traditionally done during algebraic attacks of
type B are redundant or subject to pre-computation(!). Then routine
code breaking with different y can be done routinely at a lower cost. Most
existing crypto literature completely ignores this problem and therefore
the security of numerous public key and digital signature schemes has
not been evaluated accurately or not yet, as only method B is typically
studied.

1.3 Regularity Degree and Degree Falls

This term is an object of some confusion in the literature. In general,
mathematicians define “regular” sequences of polynomials, a theoretical
property which is violated for most real-life sets of polynomials over finite
fields [1]. From this authors define a “semi-regularity degree” [1] which is
frequently equal to a maximum degree reached during the Gröbner basis
computation.

Definition 11 (Informal - Regularity Degree). In crypto literature
authors frequently use the term “regularity degree” to denote the degree
of the first-degree fall in Gröbner basis computations with algorithms
such as F4 or F5, ignoring the fact that in some rare cases this degree
further increases during towards the end of the computation [which is
rare] and that this degree may in some rare cases be different for different
algorithms [F5 vs F4 etc].

1.4 Second Face - Multivariate Version

We can say that F2() is a second face of F1(). However F1() is a func-
tion, or it has an “explicit” form, we compute y from x explicitly. In
contrast F2(x, y) are I/O relations, (Input/Output relations) or it has
an “implicit” form.

4 Nicolas T. Courtois1, Peter Spacek2, and Students1

1.5 Second Face - Two-Variate Versions E2

The second face also always or frequently occurs at the level of polyno-
mials with “big” variables x, y. The only problem is sometimes that the
degree of these polynomials is very large or they have too many terms.

Simple and Old Example 1. For example from [8] we learn that if

y = E1(x) = x3,

then we have
E2(x, y) = xy − x4.

Here when y is fixed the univariate degree in x becomes 4 and a multi-
variate degree in xi becomes 1. Breaking this cryptosystem requires time
of about

O(ndω)

where ω ≤ 2.39 it the exponent of the Gaussian reduction This is at most
O(n3) time.
The degree of regularity is 3 here, and method B is less efficient than
method A with complexity at most O(n3ω).

More General MI Attack - Old Example 2. In general from [8] we
learn that if

y = E1(x) = xq
a+1,

then we have the identity q2a + (qa + 1) = qa(qa + 1) + 1 and therefore
we have

E2(x, y) = xq
2a

y − yq
a

x.

Degree with method 1 is still just 1 here and attacks take less than O(n3)
time. Method B will again operate at degree 3 in time at most O(n3ω).

Title Suppressed Due to Excessive Length 5

HFE Example 3. We can have for example the following polynomial
which is a special case of the HFE cryptosystem [9]:

y = E1(x) = x+ x3 + x5,

then we have
E2(x, y) =????

which can be computed following works of Joux and Faugère, and will
NOT in general have low degree in x, however F2(x1, x2, . . . ; y1, y2, . . .)
will have low degree in xi and the degree of regularity will be lower. It is
possible to see that if D is degree of E1(x) then the degree of regularity
of F2 will increase as log2(D), [2]. This was further studied by Joux and
Faugère and numerous other authors (more recently by Kosters [6]).

New Example 4. In [13] we have the following example based on a
Dobbertin permutation polynomial: Let n = 2m− 1.

y = E1(x) = x2
m+1 + x3 + x,

then we have

E2(x, y) = x9 + x6y + x5 + x4y + x3(y2
m

+ y2) + xy2 + y3 = 0

We do no longer have E1 of low degree. Instead we get a low degree
in x for E2. When y is fixed the univariate degree in x becomes D = 9.
This is useful for private key operations such as signature generation:
Polynomial equations of degree 9 can be easily solved in finite fields. Now
the multivariate degree in xi becomes 2 (for example we have 9 = 23+1).
the complexity to break this cryptosystem by method A ignoring pre-
computation of relations is about O(n2ω).
The degree of regularity is probably at most 4 here. For the attacker
who does not know S, T,E2() but only F2, the complexity to break this
cryptosystem by method B is higher and about O(n4ω).

1.6 Crypto Design Goals

Let D be the univariate degree of E2 in x and when y is fixed.
The designer tries to increase the degree or regularity d for F2 while
keeping the univariate degree D of E2 relatively low.

1.7 Security vs. Two-Variate Versions

The goal of security evaluations is to see that we do not have another
“better” E2 which exists. An ultimate test is to evaluate the degree of
regularity of the multivariate version F2(x) = y for some fixed y value: a
real-life attack with a Gröbner bases algorithm. The degree of regularity
is the same for F1 and F2.

6 Nicolas T. Courtois1, Peter Spacek2, and Students1

2 Computing E2 with Resultants

In [13] we find an explicit formula to compute E2 using resultants. This
can be implemented in SageMath.
We go back to New Example 4 from [13].

y = E1(x) = x2
m+1 + x3 + x,

Let us recode this as

y = B(x, z) = xz + x3 + x

where z = x2
m

is the high degree part.
A nice trick to compute E2 is to use resultants as explained in [13]. We

observe that if z = x2
m

we also have x = z2
m−1

as n = 2m− 1.
Therefore one way to rewrite y = B(x, z) is y = B(z2

m−1

, x2
m

).
Then we compute:

E2(x, y) = Resz

(
B(x, z)− y,

(
B(z2

m−1

, x2
m

)
)2m
− y2

m
)

Here is our SageMath code in which we manually replace things to avoid
any high powers to appear. For example, we observe that n = 2m − 1
and zn is the same as z and that

(zq
m−1

)q
m

= zq
m−1∗qm = zq

m∗qm∗q−1

= zq
2m−1

= zq
n

= z1 = z

and

(xq
m

)q
m

= xq
m∗qm = xq

2m∗1
= xq

2m∗q−1∗q1 = xq
2m−1∗q = xq

n∗q = x1∗q = xq

So the rule is that x can be replaced by z, and z must be replaced by
x2. In this case we need to write:

P.<x,y,z,t> = PolynomialRing(GF(2^51), 4)

B1 = x*z + x^3 + x - y

B2 = z*x^2 + z^3 + z - t

B1.resultant(B2, z)

It is possible to see that the result is the same for any sufficiently larger
finite field of characteristic 2.
The result is:

x9 + x6 ∗ y + x5 + x4 ∗ y + x3 ∗ y2 + x3 ∗ t+ x ∗ y2 + y3

where t can now be replaced by y2
m

.
It is important to see that E2 is NOT at all unique, many such polyno-
mials exist. However, the resultant method above is guaranteed to give
polynomials with a degree in x which is not too high, being at most qd2

where q = 2, d = 3 here, see [13]. Therefore at most 18. Yet better poly-
nomials with a lower degree in x may exist. By our SageMath method,
we obtained a lower degree 9.

Title Suppressed Due to Excessive Length 7

2.1 Simple Pat Example 5

We apply the same SageMath code to SimplePat Example 1 on page 6
of [13].

P.<x,y,z,t> = PolynomialRing(GF(2^51), 4)

B1 = x*z + x^5 + x^3 - y

B2 = z*x^2 + z^5 + z^3 - t

B1.resultant(B2, z)

The computation takes 10 seconds and we get

x25+x23+x20∗y+x13+x9+x8∗y+x7∗y2+x5∗y4+x6∗y+x5∗y2+x3∗y4+x5∗t+x2∗y3+y5

which is the same as in the paper.

8 Nicolas T. Courtois1, Peter Spacek2, and Students1

2.2 General Pat Example 6

Again the rule is that x can be replaced by z, and z must be replaced
by x2. In this case we need to write:

P.<x,y,z,t> = PolynomialRing(GF(2^57), 4)

B1 = x^3 + x*z + z^3 - y

B2 = z^3 + x^2*z + x^6 - t

B1.resultant(B2, z)

We get the same result as in the paper.

Title Suppressed Due to Excessive Length 9

3 Software generated polynomials and E2

Here we present an automated way to generate more polynomials in each
family, and computing E2:

3.1 Simple Pat

In Simple Pat family of polynomials have following form:

E1(x) = P (x) = xq
m+1

+

i≤d∑
i=0,i=qj ,i=qj+qk

αix
i

Mohammed Mirza, Jack Rowland and Maxine Emuobosa wrote a code
for generating polynomials in Simple Pat Family. You can use following
code to generate all E1 polynomials up to certain degree, along with E2

computation:

from sets import Set

iSet = Set([0])

q = 2; d = 5

j = 0; k = 0

while True:

k = 0

while True:

i = (q**j, q**j + q**k)

if i[1] > d:

break

iSet.add(i[0])

iSet.add(i[1])

k += 1

if i[0] > d:

break

j += 1

powers = list(powerset(iSet))

powers.pop(0)

print powers

P.<x,y,z,t> = PolynomialRing(GF(2^51, ’x’), 4)

B1list = map(lambda p: x*z + sum(map(lambda y: x^y, p)) - y, powers)

B2list = map(lambda p: z*x^2 + sum(map(lambda y: z^y, p)) - t, powers)

for i in range(len(B1list)):

print (B1list[i] + y, B1list[i].resultant(B2list[i], z))

10 Nicolas T. Courtois1, Peter Spacek2, and Students1

3.2 General Pat

For generating polynomials which follows the rule

B(x, z) =

i≤d∑
i=0,i=qj ,i=qj+qk

αix
i +

i≤d∑
i=qj ,i=qj+qk

βiz
i +

i+j≤d∑
i=qk,j=ql

γi,jx
izj ,

Marios Georgiou and Alex Nikas, created SageMath function. The Sage-
Math code for B xz function is in the appendix. You can use it with this
command:

e1 = B_xz(2, 3, x, z, [0, 0, 0, 1], [0, 0, 1], [1, 0, 0])

print e1

First two arguments are q and d. Next two arguments are variables x
and z. Three vectors at the end are α, β and γ. αi is then i th element
of alpha (alpha[i]). We present code for computing E2. WRT the paper
we let t = yq

m

, z = xq
m

. Alpha, beta and gamma are again coeficients
for E1

def E_2(q, d, x, y, z,t, alpha, beta, gamma):

b1 = B_xz(q, d, x, z, alpha, beta, gamma)

b2 = B_xz(q, d, z, x^q, alpha, beta, gamma)

res1 = b1 - y

res2 = b2 - t

E2 = res1.resultant(res2, z)

return E2

To generate E2 type following:

e2 = E_2(2, 3, x, y, z, t, [0, 0, 0, 1], [0, 0, 1], [1, 0, 0])

print e2

3.3 MAC - Permutation Polynomial Generation

Settings: The field size is specified by variable q presented in form
q = 2p, where p is positive integer. The degree of the field extension is n
and has to be in the form 2m− 1.

Generation: To generate our Permutation Polynomials we sieved gen-
eral PAC E1 polynomials that were randomly generated by group three’s
general PAC generator using Hermite’s Criterion [15]. This first required
us to convert the E1 polynomials from a multivariate polynomial in terms
of x and z to a univariate polynomial E1,uni in the terms of x, this was
done by substituting z with xq

m

as shown in two face paper [13]. This
univariate polynomial must have exactly one root in the field Fqn and

Title Suppressed Due to Excessive Length 11

E1,uni(x)t mod (xq − x) must have a degree < q − 2 for every positive
integer t where t ≤ q − 2 and t mod p 6= 0. When these conditions hold
E1,uni is a Permutation polynomial for the chosen Settings and a valid
E2 can be generated.

Contribution: The work was equally split between the Simon Bohm,
Quentin Delmas and Bryce Boyd, with several iterations created and
merged into the final generator. As mentioned above the E1 general PAC
generator was created by group three. The MAC E2 generator which is
passed valid E1 polynomials was created by all five members of group
one. There is also an incomplete security evaluation function included
with the Generator.

Example Polynomials:

– p: 1 d: 4 m: 3 q: 2 n: 5
E1: x32 + x9 + x8

E2: x32 + y32 + x15 + x7y8 + x14 + x6y8 + x9 + x8y
– p: 1 d: 6 m: 5 q: 2 n: 9

E1: x160 + x96 + x32

E2: y160 + x10y128 + x6y128 + x2y128 + x40y32 + x24y32 + x50 + x46 +
x42 + x8y32 + x34 + x30 + x26 + x18 + x14 + x10

– p: 1 d: 6 m: 5 q: 2 n: 9
E1: x66

E2: y64 + x4y2

– p: 1 d: 4 m: 5 q: 2 n: 9
E1: x128 + x64 + x4 + x2 + x+ 1
E2: y128 + y64 + x32 + x16 + x8 + x4 + y4 + y2 + x+ y + 1

– p: 2 d: 6 m: 3 q: 4 n: 5
E1: x64 + x4 + x2

E2: x16 + y8 + x4 + y4 + x2 + y2

– p: 2 d: 4 m: 3 q: 4 n: 5
E1: x256 + x128 + x4

E2: x32 + y32 + x16 + y16 + x8 + y4

Source code: The source code for generation can be found in appendix.

3.4 Three or a few more Blocks, ’Super Two-Face’

Maxine and Jack tried to solve a question of Super Two-Face. The first
try was to use Macaulay Resultant to compute resultant of three poly-
nomials. This was a dead-end because for the Macaulay Resultant we
need three polynomials of variables, and these polynomials have to be
homogenous. But this condition is not possible for B1,B2 and B3:

B(x, z1, z2) = y

B(zq
2m−1

1 , zq
2m−1

2 , xq
2m

)q
m

= yq
m

B(zq
2m−1

2 , xq
m

, zq
2

1)q
2m = yq

2m

12 Nicolas T. Courtois1, Peter Spacek2, and Students1

After realizing this we found a way of computing E2 from General Pad
polynomial:

E1(x) = x2 + x ∗ z1 + x ∗ z2 + x+ 1

Computation may be done with this code provided by Maxine:

q=2

t1= y^(q^m), t2=t1^(q^m)

var(’t1, t2, x, z1, z2, m, y’)

E1 = y == x^2 + x*z1 + x*z2 + x + 1

E1qm = E1.subs(y=t1,x=z1,z1=z2,z2=x^q)

subs here is subbing values such that E1qm = E1^(q^m)

E1qm2 = E1qm.subs(t1=t2,x=z1,z1=z2,z2=x^q)

subs here is subbing values such that E1qm2 = (E1^(q^m))^(q^m)

print E1; print E1qm; print E1qm2; print

eqnz2 = solve(E1,z2)

solving equation E1 for z2.

print eqnz2[0]

az2 = eqnz2[0].right()

ieqn = E1qm.subs(z2=az2)

subbing z2 for its value in terms of x, y and z1

print "Intermediate eqn: "+ str(ieqn); print

Intermediate equation is E1qm with z2 subbed out

eqnz1 = solve(ieqn, z1)

subbing z1 for its value in terms of x, y and t1

print eqnz1[0]

az1 = eqnz1[0].right()

if(eqnz1[0].left()==0):

raise RuntimeError, "No roots found"

print

peqn = E1qm2.subs(z2=az2).subs(z1=az1)

peqn or ’prenultimate’ equation is E1qm2

in terms of x, y, t1 and t2 with z1 and z2 subbed out.

E2= peqn.right()-t2

print "E2: "+ str(E2)

This can be done for many more polynomials E1. in General Pad form.

3.5 More Block

Michael Suinn decided to make his own multivariate polynomial class so
that I can store, manipulate, and evaluate the polynomials being gener-
ated in the General Pat algorithm for any number of input variables. The
class is very straightforward with the standard iterators, setter functions,
and one getter function. The evaluate function is very straightforward as
it evaluates the stored polynomial with the given arguments. There was

Title Suppressed Due to Excessive Length 13

one thing that is technically broken, the symbolic evaluation function
as it is unable to do evaluate multi-term expressions, but the algorithm
never uses them so Michael felt that the current state is fine. Michael
thinks the print function is pretty self-explanatory.

Michael tried to tackle the task of creating E2 for arbitrary numbers of
variables in E1 by writing a multivariable polynomial class and B genera-
tor function to store and manipulate polynomials. It can generate B and
E1, but E2 becomes computationally intractable due to the exponential
increase in the size of the Sylvester matrix used to calculate the resultant.

Timing results from the code clearly confirm Michael’s exponential com-
plexity growth conclusion. For 15-20 variables, SageMath overflows and
is unable to calculate the resultant. Michael uses successively larger pow-
ers of x in b2 because of the way that the variables are defined in the
paper (z1 = xq, z2 = z1q...) and assume the absolute best case scenario,
where all but the largest power of x is canceled out. Even then, at 10
variables, it takes 1+ seconds to calculate E2. This conclusion is also
indirectly supported by the paper, stating that it is an open problem to
find B such that E2 is easy to calculate, implying that the general B is
difficult. The graph for 10 variables is included below:

Fig. 1. Time dependency diagram for calculating E2

14 Nicolas T. Courtois1, Peter Spacek2, and Students1

4 How to generate public key

We need to generate public keys from the E1 We will use construction
described in [5]. Let x be column vector x = (x1, x2, ..., xn) and y ana-
logicly y = (y1, y2, ..., yn). We generate two random n x n affine matrices
S and T (T has to be invertible), and two random vectors vs and vt. We
compute two vectors u and v:

u = (S ∗ x) + vs

and
v = (T ∗ y) + vt

More pricesly we want to compute y from this equation.

y = T−1 ∗ (v − vt)

The relation between u and v is given by equation

v = E1(u)

We attach SageMath code for each family of polynomials in the appendix.

Title Suppressed Due to Excessive Length 15

5 Implementation of Two-Faces signature
scheme

We decided to implement Signature and Verification of Two-Faces mul-
tivariate system. The code produced by Cindy Hau and Tereza Loffel-
mannova is in the appendix. This code is not finished and should be
rewritten in the future.

Data: message x of length n, secret key(matrices S and T , vectors vs and vt),
polynomial E2

Result: signature sig (list of polynomials)
1. Compute u using the equation: u = Sx+ vs
u is in the form of vector of zeroes and ones.
2. Compute v using the equation: v = Ty + vt
v is in the form of vector of polynomials with yi
3. Compute sig = E2(u, v).
sig(y) is in form of list of polynomials with yi
#note sig(y) = (00..0) only if y = Pub(x), public key was generated with E1

4. return sig
Algorithm 1: Signature pseudoalgorithm

Data: message x of length n, public key(vector of polynomials y, signature sig
(list of polynomials)

Result: true or false
1. Compute y = Pub(x)
y is in the form of vector of zeroes and ones.
2. Compute sigRes = sig(y)
if sigRes==0 then

return true
else

return false
end

Algorithm 2: Verifycation pseudoalgorithm

16 Nicolas T. Courtois1, Peter Spacek2, and Students1

6 Verification

E2 is not unique, therefore it is useful to write software which checks if
polynomials with a yet lower degree in x do not exist (while remaining
sparse and keeping degree in y not too high). This is difficult due to
sparsity conditions.

7 Security Simulations

For each E1 we need to check if the regularity degree is high while min-
imizing the degree in x. This will give best cryptosystems for industrial
applications.

Now, with y equations from section 4, we evaluate security with method
B. We use SageMath for computing ideal and also computing degree of
semi regularity and actual Groebner basis. We need to add field equations
to the computation of ideal:

x2i = xi∀i, 0 ≤ i < n

L = []

for f in y:

L.append(P(f[0]).homogenize())

for i in (0..n-1):

L.append(P(var(’x%i’ % i)^2-var(’x%i’ % i)).homogenize())

I = Ideal(L)

print I.degree_of_semi_regularity()

print max(f.degree() for f in I.groebner_basis())

If we don’t homogenize the polynomials, we have complete results. We
are not able to explain it now.

We present more polynomials with security evaluation:

7.1 Simple Pat

Here we present result of student’s polynomials tests. First, Maxine
tested polynomial x3 + x2 + x ∗ z + x:

Title Suppressed Due to Excessive Length 17

Table 1. Results for polynomial: x3 + x2 + x ∗ z + x

n deg s-reg max deg in g-basis deg s-reg hom. max deg in g-basis hom security evaluation
3 3 0 3 3 27.88
5 3 2 3 3 213.91
7 3 0 4 3 219.35
9 4 0 4 4 224.07
11 4 0 4 4 228.07
13 4 1 4 5 231.49
15 4 1 5 6 234.45
17 5 0 5 6 237.05
19 5 0 5 7 239.37
21 5 0 5 241.46

Fig. 2. Results for polynomial: x3 + x2 + x ∗ z + x

Below is both the table and the plot of the degree of regularity for the
polynomial x4 + x3 + xz, for n < 21. This could not be attempted any
higher due to problems with sage and computing high exponents. This
was made by Jack Rowland.

He also finds regression curve for these values. To avoid over-fitting only
computed it to the third degree, so the curve is y = 0.001x3−0.0056x2 +
0.2142x+ 2.3548. A higher degree curve results in over-fitting and a less
general curve.

18 Nicolas T. Courtois1, Peter Spacek2, and Students1

Table 2. Results for polynomial: x4 + x3 + xz

n deg of semi reg
deg of semi reg
(hom)

max degree in
gro basis

max degree in
gro basis (hom)

3 3 3 2 3

5 3 3 2 3

7 4 4 2 3

9 4 4 2 4

11 4 4 2 5

13 4 4 2 5

15 5 5 2 6

17 5 5 2 6

19 5 5 2 7

Table 3. Table of Security Evaluation for E1(x) = x4 + x3 + xz

Fig. 3. Results for polynomial: x4 + x3 + xz

Mohammed Mirza also managed to patch the code for the security eval-
uation to work with values of n > 20. However the computation of the
degree of semi-regularity became very slow for n > 41. Similarly, the
computation of the maximum degree in the Grbner basis became very
slow for n > 21.

Below is the plot of the degree of regularity (homogeneous) for the poly-
nomial xz+x5 +x4 +x2, for n < 53. The regression line has the equation
d = 0.1223n+ 2.7777.

Title Suppressed Due to Excessive Length 19

Fig. 4. Results for polynomial: xz + x5 + x4 + x2

7.2 General Pat

It would be interesting to tsest General Pat family of polynomials too.
This task was for Marios Georgiou, Alex Nikas, Michael Suinn, un-
forcenetly, they have not done it.

7.3 MAC

Code for computing degree of regularity by Simon Bohm, Quentin Del-
mas and Bryce Boyd is in the appendix. They have not done complete
security evaluation with estimating security level in bits. More tests needs
to be done in this area.

7.4 Security level in bits

Maxine produced a code for estimating the security level in bits. This
needs to be tested further.

def sec_eval_bin(n, d):

w = log(7,2)

T=binomial(n,d)

for i in range(d-1,0,-1):

T = T + binomial(n,i)

sec_power = round(log(T^w,2),5)

print "2^"+ str(sec_power)

for j in range(3,23,2):

sec_eval_bin(j,5)

8 Conclusion

20 Nicolas T. Courtois1, Peter Spacek2, and Students1

References

1. Magali Bardet, Jean-Charles Faugre, Bruno Salvy: On the complex-
ity of Gröbner basis computation of semi-regular overdetermined
algebraic equations, In ICPSS 2004.

2. Nicolas Courtois: The security of Hidden Field Equations
(HFE); Cryptographers’ Track RSA Conference 2001, LNCS 2020,
Springer, pp. 266-281. https://pdfs.semanticscholar.org/15ef/
c37e3619074803fd48376f78d15f8368dd0f.pdf

3. Nicolas Courtois: La sécurité des primitives cryptographiques basées
sur les problèmes algébriques multivariables MQ, IP, MinRank, et
HFE, PhD thesis, Paris 6 University, 2001, in French. Available at
http://www.minrank.org/phd.pdf.

4. Jean-Charles Faugère: Report on a successful attack of HFE Chal-
lenge 1 with Gröbner bases algorithm F5/2, announcement that ap-
peared in sci.crypt newsgroup on the internet on April 19th 2002.

5. Neal Koblitz: ”Algebraic Aspects of Cryptography”; Springer,
ACM3, 1998, Chapter 4: ”Hidden Monomial Cryptosystems”, pp.
80-102.

6. Ming-Deh A. Huang, Michiel Kosters, Sze Ling Yeo: Last Fall De-
gree, HFE, and Weil Descent Attacks on ECDLP, In Crypto 2015,
LNCS 9215, pp. 581-600, 2015.

7. Tsutomu Matsumoto, Hideki Imai: ”Public Quadratic Polynomial-
tuples for efficient signature-verification and message-encryption”,
Eurocrypt’88, Springer 1998, pp. 419-453.

8. Jacques Patarin: ”Cryptanalysis of the Matsumoto and Imai Public
Key Scheme of Eurocrypt’88”; Crypto’95, Springer, LNCS 963, pp.
248-261, 1995.

9. Jacques Patarin: ”Hidden Fields Equations (HFE) and Isomor-
phisms of Polynomials (IP): two new families of Asymmetric Al-
gorithms”; Eurocrypt’96, Springer, pp. 33-48. The extended version
can be found at http://www.minrank.org/hfe.ps

10. Jacques Patarin: La Cryptographie Multivariable; Mémoire
d’habilitation à diriger des recherches de l’Université Paris 7, 1999.

11. Jacques Patarin, Louis Goubin, Nicolas Courtois: Quartz, 128-bit
long digital signatures; Cryptographers’ Track Rsa Conference 2001,
LNCS 2020, pp.282-297, Springer.
Note: The Quartz signature scheme has been updated since, see
[12].

12. Jacques Patarin, Louis Goubin, Nicolas Courtois: Quartz, 128-bit
long digital signatures; An updated version of Quartz specification
available at http://www.cryptosystem.net/quartz/

13. Gilles Macario-Rat, Jacques Patarin: Two-Face: New Public Key
Multivariate Schemes, eprint.iacr.org/2017/1210.pdf

14. Adi Shamir, Aviad Kipnis: ”Cryptanalysis of the HFE
Public Key Cryptosystem”; Crypto’99. Can be found at
http://www.minrank.org/hfesubreg.ps

15. Christopher J.Shallue. ”Permutation Polynomials of Finite Fields”.
In: Monash University (2012), p. 10.

Title Suppressed Due to Excessive Length 21

A Code - generating public key - Simple Pat

import re

Let K be extension on degree n of the field Fq where q is power of 2

def e1_enc(E1):

q=2 # <-------input

n=15 # <-------input

K=GF(q)

P=PolynomialRing(K, ’x’, n)

P.inject_variables()

K2=GF(q^n)

fx=K2.modulus()

l=var(’x%i’ % n)

MVP=PolynomialRing(K, ’x’, n+1)

MVP.inject_variables()

xn=MVP(l)

with localvars(fx.parent(), [l]):

fx=MVP(fx)

vector of input variables (message msg)

MSm = MatrixSpace(P,n,1)

msg=[]

for i in (0..n-1):

msg.append(var(’x%i’ % i))

msg=MSm(Matrix(n,1,msg))

basis B

Bas=[]

for i in (0..n-1):

Bas.append(xn^i)

0 < h < q^n, h=q^th+1, gcd(h,q^n-1)

th=(n+1)/2 # <-------input

h=(q^th)+1

if (gcd(h,q^n-1)!=1):

print "error"

hp=inverse_mod(h,q^n-1)

affine transformation

MSnn_2 = MatrixSpace(K,n,n)

S=MSnn_2.random_element()

T=MSnn_2.random_element()

22 Nicolas T. Courtois1, Peter Spacek2, and Students1

T needs to be invertible

while (T.is_invertible()==false):

T=MSnn_2.random_element()

MSn1_2 = MatrixSpace(K,n,1)

vs=MSn1_2.random_element()

vt=MSn1_2.random_element()

vector u computation

u=(S*msg)+vs

vector v computation

v=h^h, h=q^th+1 --> v=u^q^th+u

in the basis:

tra=0

trb=0

for i in (0..n-1):

tra=tra+u[i]*Bas[i]

trb=trb+u[i]*Bas[i]^(q^th)

tr=tra*trb

exp_array = [int(s.strip(’^’)) for s in re.findall(r’\b\^\d+\b’, str(E1))]

c = map(lambda x:1,re.findall(’x(?!\^|*)’, str(E1)))

exp_array+=c

for i in (0..n-1):

for j in (0,..len(exp_array)-1):

tr= tr+MVP(u[i]*Bas[i]^exp_array[j])

computation of v, back from the basis

v=[]

for i in (1..n):

v.append([])

tmp=expand(tr%fx)

for i in (1..n-1):

v[i] = P(expand(tr%fx).coefficient(xn^i))

tmp=tmp-v[i]*xn^i

v[0] = P(tmp)

v=Matrix(n,1,v)

output y - public key

y= T.inverse()*(v-vt)

print ’y = ’

print y

---------Security evaluation----------

Ideal computation

L = []

Title Suppressed Due to Excessive Length 23

for f in y:

print f

print ’f[0]=’

print f[0].homogenize()

L.append(P(f[0]).homogenize())

append field polynomials in form x^2=x

for i in (0..n-1):

L.append(P(var(’x%i’ % i)^2-var(’x%i’ % i)).homogenize())

print "L"

print L

I = Ideal(L)

degree of (semi)regularity and max degree in groebner_basis computation

print I.degree_of_semi_regularity()

print max(f.degree() for f in I.groebner_basis())

var(’z’)

e1_enc(x*z+x^5+x^2+x+1)

B Code - generating public key - General Pat

C Code - generating public key - MAC

generates E1 for general PAT

def B_xz(q, d, x, z, alpha, beta, gamma):

power = [] # Here are the exponents for the first two sums. In the second sum we just exclude 0.

if alpha[0] == 1:

E_1 = 1 # Here E_1 = B(x,z)

else:

E_1 = 0

j = 0

k = 0

i = 0

Calculate first two sums

while q^j <= d:

k = 0

while q^j + q^k <= d:

if q^j + q^k not in power:

power.append(q^j + q^k)

E_1 += alpha[i + 1] * x^(q^j + q^k) + beta[i] * z^(q^j + q^k)

i += 1

k += 1

j += 1

j = 0

while q^j <= d:

if q^j not in power:

power.append(q^j)

E_1 += alpha[i + 1] * x^(q^j) + beta[i] * z^(q^j)

i += 1

j += 1

24 Nicolas T. Courtois1, Peter Spacek2, and Students1

k = 0

l = 0

i = 0

#Calculate third sum

while q^k <= d:

l = 0

while q^l <= d:

if q^k + q^l <= d:

E_1 += gamma[i] * x^(q^k) * z^(q^l)

i += 1

l += 1

k += 1

return E_1

def has_unique_root(pol):

if pol == 0:

return False

return len(pol.roots()) == 1

def is_permutation_poly(E1, q, p):

if not has_unique_root(E1):

return False

for t in range(1, q - 1):

if t % p == 0:

continue

red = (E1^t) % (x^q - x)

if red.degree() > q - 2:

return False

return True

def is_permut_poly_brute(E1, x, field):

results = {}

for e in field:

if results.get(E1.subs({x: e}), False):

return False

else:

results[E1.subs({x: e})] = True

return True

Let K be extension on degree n of the field Fq where q is power of 2

calculate E2 for multivariate MAC-E1

def get_E2(E1, x, y , z, t):

B1 = E1 - y

B2 = E1.subs(x = z, z = x^2) - t

A = B1.resultant(B2, z)

a = []

for i in A.exponents():

a.append(i[0])

Title Suppressed Due to Excessive Length 25

a.sort()

return A/(x^a[0])

modified sec val (broken)

def e1_enc(E1, q, n):

K=GF(q)

P=PolynomialRing(K, ’x’, n)

P.inject_variables()

K2=GF(q^n, ’x’)

fx=K2.modulus()

l=var(’x%i’ % n)

MVP=PolynomialRing(K, ’x’, n+1)

MVP.inject_variables()

xn=MVP(l)

vector of input variables (message msg)

MSm = MatrixSpace(P,n,1)

msg=[]

for i in (0..n-1):

msg.append(var(’x%i’ % i))

msg=MSm(Matrix(n,1,msg))

basis B

Bas=[]

for i in (0..n-1):

Bas.append(xn^i)

affine transformation

MSnn_2 = MatrixSpace(K,n,n)

S=MSnn_2.random_element()

T=MSnn_2.random_element()

T needs to be invertible

while (T.is_invertible()==false):

T=MSnn_2.random_element()

MSn1_2 = MatrixSpace(K,n,1)

vs=MSn1_2.random_element()

vt=MSn1_2.random_element()

vector u computation

u_1=(S*msg)+vs

u = []

v = []

26 Nicolas T. Courtois1, Peter Spacek2, and Students1

for i in (0..n-1):

u.append(sum(u_1[i] * Bas[i]))

v.append(E1.subs(u[i]))

v=Matrix(n,1,v)

output y - public key

y= T.inverse()*(v-vt)

print ’y = ’

print y

---------Security evaluation----------

Ideal computation

L = []

for f in y:

#print f

#print ’f[0]=’

#print f[0].homogenize()

L.append(P(f[0]).homogenize())

append field polynomials in form x^2=x

for i in (0..n-1):

L.append(P(var(’x%i’ % i)^2-var(’x%i’ % i)))

print "L"

print L

I = Ideal(L)

degree of (semi)regularity and max degree in groebner_basis computation

return {"dreg": I.degree_of_semi_regularity(),

"ming": min(f.degree() for f in I.groebner_basis()),

"maxg": max(f.degree() for f in I.groebner_basis())}

degree of (semi)regularity and max degree in groebner_basis computation

return {"dreg": I.degree_of_semi_regularity(),

"ming": min(f.degree() for f in I.groebner_basis()),

"maxg": max(f.degree() for f in I.groebner_basis())}

returns all possible arrays of given lenght with elements <= max_int

class PossibleArrays:

def __init__(self, length, max_int):

self.length = length

self.max_int = max_int

self.arr = [0] * length

def __iter__(self):

return self

def next(self):

i = 0

result = self.arr[:]

Title Suppressed Due to Excessive Length 27

look for next space to modify

while i < self.length - 1 and self.arr[i] == self.max_int:

self.arr[i] = 0

i += 1

if result[self.length - 1] == self.max_int + 1:

raise StopIteration

self.arr[i] = self.arr[i] + 1

return result

returns all possible array of given length with elements <= max_int

in a random order

import random

class RandomArrays:

def __init__(self, length, max_int):

self.length = length

self.max_int = max_int

def __iter__(self):

return self

def next(self):

return [random.randint(0, self.max_int) for _ in range(self.length)]

calculate E2 for multivariate MAC-E1

def get_E2(E1, x, y , z, t):

B1 = E1 - y

B2 = E1.subs(x = z, z = x^2) - t

A = B1.resultant(B2, z)

a = []

for i in A.exponents():

a.append(i[0])

a.sort()

return A/(x^a[0])

from itertools import product

for p, d, m in product([1,2,3,4],[3,5,7],[3,5,7,9,11]):

Input

q = 2^p

n = 2 * m - 1

amount = 1

try:

28 Nicolas T. Courtois1, Peter Spacek2, and Students1

field = GF(q^n)

P.<x,y,z,t>=PolynomialRing(field)

i = 0

while i < amount:

alpha, beta, gamma = RandomArrays(d*d, q^n-1).next(), RandomArrays(d*d,q^n-1).next(), RandomArrays(d*d,q^n-1).next()

E1 = B_xz(q, d, x, z, alpha, beta, gamma)

make polynomial univariate by setting fixed m

E1_uni = E1.subs({z: x^q^m}).univariate_polynomial()

perm_poly = is_permutation_poly(E1_uni, field.order(), field.characteristic())

perm_poly = is_permut_poly_brute(E1_uni, x, field)

if perm_poly:

i += 1

print "p: %i d: %i m: %i q:%i n:%i" % (p,d,m,q,n)

print "E1:", E1_uni, "\nE2:", get_E2(E1,x,y,z,t).subs({t: y^2^m}), "\n"

e1_enc(E1_uni, q, n), "\n"

except:

print "fail", "p: %i d: %i m: %i q:%i n:%i" % (p,d,m,q,n)

D Code - Signature and verification

def Verify(message, signature, pubkey):

q=2 # <-------input

n=5 # <-------input

K=GF(q)

y0, y1, y2, y3, y4 = var(’y0’, ’y1’, ’y2’, ’y3’, ’y4’)

ys = [y0, y1, y2, y3, y4]

x0, x1, x2, x3, x4 = var(’x0’, ’x1’, ’x2’, ’x3’, ’x4’)

xs = [x0, x1, x2, x3, x4]

##-----Verification

pass values of the message into the public key

pubmes_list = []

for i in (0..n-1):

pubmes = pubkey[i].subs({xs[i]:message[i] for i in (0..n-1)})

pubmes_list.append(pubmes)

pass values of the public key into the signature, i.e. verify the signature

ver_list = []

for i in (0..n-1):

ver = signature[i].subs({ys[i]:pubmes_list[i] for i in (0..n-1)})

ver_list.append(ver)

print ’Verification:’

Title Suppressed Due to Excessive Length 29

print ver_list

if ver_list == [0,0,0,0,0]:

print ’Valid signature’

else:

print ’Invalid signature’

def Sign(message):

q=2 # <-------input

n=5 # <-------input

K=GF(q)

P=PolynomialRing(K, ’x’, n)

P.inject_variables()

K2=GF(q^n)

fx=K2.modulus()

l=var(’x%i’ % n)

MVP=PolynomialRing(K, ’x’, n+1)

MVP.inject_variables()

xn=MVP(l)

with localvars(fx.parent(), [l]):

fx=MVP(fx)

y0, y1, y2, y3, y4 = var(’y0’, ’y1’, ’y2’, ’y3’, ’y4’)

ys = Matrix([[y0], [y1], [y2], [y3], [y4]])

MP.<ui,vi>=PolynomialRing(K, 2)

MP.inject_variables()

vector of input variables (message msg)

MSm = MatrixSpace(P,n,1)

msg=[]

for i in (0..n-1):

msg.append(var(’x%i’ % i))

msg=MSm(Matrix(n,1,message))

basis B

Bas=[]

for i in (0..n-1):

Bas.append(xn^i)

th=(n+1)/2

affine transformation

MSnn_2 = MatrixSpace(K,n,n)

S=MSnn_2.random_element()

30 Nicolas T. Courtois1, Peter Spacek2, and Students1

T=MSnn_2.random_element()

T needs to be invertible

while (T.is_invertible()==false):

T=MSnn_2.random_element()

MSn1_2 = MatrixSpace(K,n,1)

vs=MSn1_2.random_element()

vt=MSn1_2.random_element()

computation of vector u

u=(S*msg)+vs

tra=0

trb=0

for i in (0..n-1):

tra=tra+u[i]*Bas[i]

for i in (0..n-1):

trb=trb+u[i]*Bas[i]^(q^th)

tr=tra*trb

computation of v, back from the basis

v=[]

for i in (1..n):

v.append([])

tmp=expand(tr%fx)

for i in (1..n-1):

v[i] = P(expand(tr%fx).coefficient(xn^i))

tmp=tmp-v[i]*xn^i

v[0] = P(tmp)

v=Matrix(n,1,v)

output y - public key

y= T.inverse()*(v-vt)

computation of vector v

v = T*ys + vt

##-----Signature

#computation of E2(u,v) from E2(x,y)=x^25 + x^23 + x^20*y + x^13 +

x^9 + x^8*y + x^7*y^2 + x^6*y + x^5*y^4 + x^5*y^2 + x^5*y^8 +

x^3*y4 + x^2*y^3 + y^5 (simple pat, example 1)

vl= v.list()

ul = u.list()

E2_list = []

for i in (0..n-1):

E2 = ul[i]^25 + ul[i]^23 + ul[i]^20*vl[i] + ul[i]^13 + ul[i]^9 + ul[i]^8*vl[i] + ul[i]^7*vl[i]^2 + ul[i]^6*vl[i] + ul[i]^5*vl[i]^4 + ul[i]^5*vl[i]^2 + ul[i]^5*vl[i]^8 + ul[i]^3*vl[i]^4 + ul[i]^2*vl[i]^3 + vl[i]^5

E2_list.append(E2)

Title Suppressed Due to Excessive Length 31

print E2’s as a vector of polynomials

E2_vector = Matrix([[E2_list[0]], [E2_list[1]], [E2_list[2]], [E2_list[3]], [E2_list[4]]])

print (’Signature:’)

print E2_vector

E Code - More blocks

###

Polynomial Class

###

import numpy as np

class MultiPoly:

def __init__(self, c = [], v = [], e = [], copy = None):

if copy != None:

self.coeff = np.array(copy.coeff)

self.var = np.array(copy.var)

self.exp = np.array(copy.exp)

else:

self.setCoeff(c)

self.setVar(v)

self.setExp(e)

#Iterator stuff

def __iter__(self, index = 0):

self.index = index

return self

def __getitem__(self,key):

try:

return(self.coeff[key], [(v, self.exp[i][key]) for i,v in enumerate(self.var)])

except IndexError:

return np.nan

def next(self):

n = self.getTerm(self.index)

if n is np.nan:

raise StopIteration

else:

self.index += 1

return n

#Setter functions

def setCoeff(self, c):

if isinstance(c, list):

self.coeff = np.array(c)

else:

32 Nicolas T. Courtois1, Peter Spacek2, and Students1

raise ValueError(’Coefficients must be in array form’)

def setVar(self, v):

if isinstance(v, list):

self.var = np.array(v)

else:

raise ValueError(’Variables must be in array form’)

def setExp(self, e):

if isinstance(e, list):

if len(e) > 0 and isinstance(e[0],list):

self.exp = []

for entry in e:

self.exp.append(entry)

else:

self.exp = np.array([np.array(e)])

else:

raise ValueError(’Exponents must be in array form’)

#Gets the term at index in polynomial, fails if imbalanced lists

def getTerm(self, index):

try:

return(self.coeff[index], [(v, self.exp[i][index]) for i,v in enumerate(self.var)])

except IndexError:

return np.nan

#Evaluate the polynomial with given arguments

def evaluate(self,**kwargs):

value = 0

for term in self:

tempVal = 1

for v in term[1]:

try:

tempVal *= kwargs[v[0]]^v[1]

except Exception as e:

raise type(e)(’Variable: ’ + str(e) + ’ not provided to evaluate function’)

value += term[0]*tempVal

return value

#Symbolically evaluate polynomial

def symEval(self,**kwargs):

for arg in kwargs:

if isinstance(kwargs[arg], tuple) and arg in self.var:

varIndex = int(np.where(self.var == arg)[0])

dupIndex = int(np.where(self.var == kwargs[arg][1])[0]) if kwargs[arg][1] in self.var else None

self.var[varIndex] = kwargs[arg][1]

for i,term in enumerate(self):

if term[1][varIndex][1] != 0:

self.coeff[i] *= kwargs[arg][0]

Title Suppressed Due to Excessive Length 33

self.exp[varIndex][i] *= kwargs[arg][2]

if dupIndex is not None:

self.exp[dupIndex] = [z[0]+z[1] for z in zip(self.exp[dupIndex], self.exp[varIndex])]

self.exp = np.delete(self.exp, varIndex, 0)

self.var = np.delete(self.var, varIndex)

else:

raise ValueError(’Symbolic evaluation args must have form <varName>=(coeff,newVar,exp)’)

def sortByExp(self,varIndex=0):

for passnum in range(len(self.exp[varIndex])-1,0,-1):

for i in range(passnum):

if self.exp[varIndex][i]>self.exp[varIndex][i+1]:

for exp in self.exp:

temp = exp[i]

exp[i] = exp[i+1]

exp[i+1] = temp

temp = self.coeff[i]

self.coeff[i] = self.coeff[i+1]

self.coeff[i+1] = temp

#Print function

def printPoly(self):

i = 0

term = self.getTerm(i)

outStr =""

for term in self:

if term[0] == 0:

continue

if term[0] != 1:

outStr += str(term[0])

for v in term[1]:

if v[1] != 0:

outStr += str(v[0]) + "^{" + str(v[1]) + "}"

outStr += " + " if outStr != "" else "1 + "

print outStr[:len(outStr) - 2]

import math

import itertools

import numpy as np

def genB(d, q, numVars = 2):

ub = floor(math.log(d, q))+1

vals = []

34 Nicolas T. Courtois1, Peter Spacek2, and Students1

for i in range(ub^numVars):

vals.append([floor(i/ub^mod) % ub for mod in range(numVars)])

BExp = [[0] for _ in range(numVars)]

if d >= 2:

for i in range(numVars):

for j in range(numVars):

BExp[j].append(1 if i == j else 0)

doneSums = []

for val in vals:

#if len([(i,v) for i,v in enumerate(val) if v != 0]) == 1:

for i in range(numVars):

BExp[i].append(q^val[i] if val[i] != 0 else 0)

valSum = sum([q^v for v in val])

if valSum <= d:

for i in range(numVars):

BExp[i].append(q^val[i])

if valSum not in doneSums:

doneSums.append(valSum)

for i in range(numVars):

for j in range(numVars):

BExp[j].append(valSum if i == j else 0)

#BCoeff = list(np.random.randint(q, size=len(BExp[0])))

BCoeff = [1]*len(BExp[0])

BVar = [’x’]

for i in range(numVars - 1):

BVar.append("z"+str(i))

return(BCoeff, BVar, BExp)

###

Resultant Attempt

###

import sympy as sp

from sympy.matrices import Matrix

from sympy import *

def resultant(poly1, poly2):

if isinstance(poly1, MultiPoly) and isinstance(poly2, MultiPoly):

#Yucky indexing...

dim1 = poly1[-1][1][0][1]

dim2 = poly2[-1][1][0][1]

totDim = dim1 + dim2

sylArray = np.zeros((totDim, totDim))

coeff1 = []

Title Suppressed Due to Excessive Length 35

for i in range(dim1 + 1):

if i in poly1.exp[0]:

coeff1.append(poly1.coeff[np.where(poly1.exp[0]==i)][0])

else:

coeff1.append(0)

coeff2 = []

for i in range(dim2 + 1):

if i in poly2.exp[0]:

coeff2.append(poly2.coeff[np.where(poly2.exp[0]==i)][0])

else:

coeff2.append(0)

for i in range(dim1):

for j in range(dim1+1):

sylArray[j+i][i] = coeff1[j]

for j in range(dim2+1):

sylArray[j+i][i+dim1] = coeff2[j]

np.linalg.det(sylArray)

else:

raise ValueError(’Parameters must be MultiPoly objects’)

###

Timing Code

###

import matplotlib.pyplot as plt

import time

import numpy as np

alpha = beta = gamma = [1] * 1000

d = 6

q = 2

runs = 10

timeArray = []

for i in range(runs):

b1 = B_xz(q, d, x, z, alpha, beta, gamma)

b2 = B_xz(q, d, z, x^(q^(i+1)), alpha, beta, gamma)

res1 = b1 - y

res2 = b2 - t

start = time.time()

E2 = res1.resultant(res2, z)

end = time.time()

timeArray.append(end - start)

36 Nicolas T. Courtois1, Peter Spacek2, and Students1

t = np.arange(0.0, runs, 1)

plt.plot(t, timeArray)

plt.xlabel(’Number of Variables’)

plt.ylabel(’Time (s)’)

plt.title(’Time to Calculate E2’)

plt.savefig("e2Group3Part4.pdf")

plt.show()

