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Abstract. This paper is about the design of multivariate public key
schemes, as well as block and stream ciphers, in relation to recent attacks
that exploit various types of multivariate algebraic relations. We survey
these attacks focusing on their common fundamental principles and on
how to avoid them. From this we derive new very general design criteria,
applicable for very different cryptographic components. These amount
to avoiding (if possible) the existence of, in some sense “too simple”
algebraic relations. Though many ciphers that do not satisfy this new
paradigm probably still remain secure, the design of ciphers will never
be the same again.
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1 Introduction

In this paper we consider a very ambitious question: how to design secure cryp-
tosystems and in particular how to design secure ciphers ? Very little real answers
do exist in this area. However it is possible to learn from our experience, and
formulate some design criteria, resulting on the one hand, from some practical
requirements on cryptographic systems, and on the other hand, from the known
attacks. Doing so we are still not done, and this for two reasons. First of all,
the recommandations do usually conflict with each other and are not obvious to
balance. Moreover for both practical implementation criteria and security crite-
ria, it is always hard to know and debatable to what extent exactly a system
satisfies these. Nevertheless, the work on the design criteria is and always was
an important and necessary area of research.

This paper is about an emergence of a new type of design criteria on various
types of cryptographic primitives. It turns out that many recent attacks on
public key signature and encryption schemes, block and stream ciphers (including
AES) have a common denominator. This common feature is the exploitation (by
various methods) of the existence of various types of algebraic relations that
involve both the inputs and the outputs of some component. We will formulate
the resulting design criteria on the respective components that will be very
similar, if not identical.

* Work supported by the French Ministry of Research RNRT Project “X-CRYPT”.
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2 From Boolean Functions to Algebraic Relations

Most of the current cipher design paradigms can be seen in terms of looking for
in some sense “good” Boolean functions / “good” vectorial functions (S-boxes)
and avoiding “bad” ones. The outputs of cryptosystems (and their components)
should simply not depend on their inputs in a way that is too simple. The defi-
nition of the word “simple” does naturally vary from one place to another. For
example in the design of stream ciphers, there are many so called “non-linearity”
criteria, dictated by some (not always really practical) attacks. Building ciphers
with such components allows to make sure that many (from real to very theoret-
ical) attacks will not work very well on these ciphers. For example, in [27] Golic
explains the criteria on the Boolean functions that should be used in stream
ciphers. Obviously these criteria, to some extent being necessary in the design
of good ciphers, are by far insufficient and nothing guarantees that a cipher
that made out of “good” components will be good itself (i.e. will be secure).
Moreover, using such components is sometimes even perceived (if they are really
very good) as a potential danger (special may mean dangerous). In particular,
many recent attacks in different areas of cryptography do work in spite of using
very good (sometimes optimal) components w.r.t. aforementioned criteria (for
example highly non-linear components).

2.1 Interesting Special Case: AES S-box

AES (Rijndael) [21,22] is precisely a good case to study in this respect. First,
because its security is simply essential, and more importantly, because it pushes
the (aforementioned) philosophy that culminates two decades of research in the
design of modern ciphers to its limits. A general question is, whether it is possible
(and how) to attack ciphers build with highly-nonlinear components (and thus
build with eminently “good” Boolean function. Obviously studying this question
will in most cases not give results being directly applicable to AES, but it gives
us the opportunity to come up with new approaches to attack AES later, as well
as should help us to simply design much better ciphers in the future (that avoid
also the recent attacks).

In [6], Canteaut and Videau study the non-linearity properties of the Inverse
function in GF(2") (the only non-linear component of AES) with relation to
linear, differential and higher-order differential attacks. It is exceptional and
close to optimality, see [6]. On page 6 of [23], the designers of AES say: “/...] The
disadvantage of these bozes is that they have a simple description in GF(2™), [...]
we are not aware of any vulnerability caused by this property. [...] Should such
a vulnerability exist, one can always replace the Sbozes by Sboxes [...] that are
not algebraic over GF(2™). [...]” Unfortunately important vulnerability of the
inverse S-box does exist. Historically the idea goes back to the algebraic attacks
on several so called multivariate public key schemes, initiated by Patarin in [43],
greatly improved by Courtois et al. [10,20], and recently adopted by Faugere
and Joux [33]. The seminal idea (due to Patarin) is to study the security of a
cipher component not in terms of Boolean/algebraic functions, but in terms of
Boolean/algebraic relations that involve both inputs and output bits. In the
last two years, this precise idea, has led to a sudden collapse of several important
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families of stream ciphers, as demonstrated by Courtois, Meier et al in [18,19,
2,11, 14] and numerous other recent papers. We explain these in Section 4. But
does it matter at all for block ciphers ? This will the main subject of this paper
starting from Section 5.

3 From Multivariate Public Key Schemes to General
Algebraic Attacks

At Crypto’95, Jacques Patarin proposes a very interesting attack on the Matsumoto-
Imai public-key cryptosystem of Eurocrypt’98, see [38,42]. This cryptosystem,
at the time considered as very promising, is based on a univariate transforma-
tion, that can be for example X — X?3. This cube function, instead of being
over a ring of numbers modulo some N like with RSA, is over a finite field, for
example GF(280). The order of a multiplicative group of GF(2%) is known and
therefore in many cases, such a power function over a finite field is, unlike in
RSA, easily invertible. However, the same algebraic structure of this function
can be “concealed” (cf. [38,42]) when it is written in a new representation, as a
set of multivariate quadratic polynomial functions. It is done in such a way that
it is easy to compute it forwards, and hard backwards, for anyone that does not
known how the system of equations have been generated. Thus, Matsumoto and
Imai construct their public key cryptosystem, see [38] for more details.

Incidentally, due to the cube function, this cryptosystem have extremely good
properties when considered in terms of Boolean functions, see [41,6]. Yet, this
did not prevent Jacques Patarin from rather badly breaking this cryptosystem,
at Crypto’95 [42]. The attack is extremely interesting. He shows that there are
simple algebraic relations that relate input and output bits of this cryptosystem.
More precisely, if the input is (zo, ..., z79) and the output is (yo,. .., yr9) there
exist bi-linear equations of type, for example Zij ai;x;y; = 0. Then, Patarin
remarks that if such equations exist, they can be easily found from the public
key, and then subsequently they can be used to decrypt any message: if we
substitute a concrete values of y in these equations they become linear and can
be solved to recover the x;.

This attack has been generalised by Courtois in [10]. This paper also proposes
a first “theory” of algebraic attacks on public key schemes ! that we will develop
and explain here. This “theory” is quite simple and can potentially be applied
to many different situations that arise in cryptanalysis. To achieve this we will
be voluntarily imprecise. Some details vary from one attack to another, and it
should be applicable also to situations that are very different than the area of
algebraic attacks.

From one point of view, one can think that it applies to more or less all cryp-
tographic attacks. To explain this, let’s consider any attack on any deterministic
one-way function which is described as a set of explicit arithmetic formulae
yi = Fi(zo,...,xn—1). The answer x we are looking for is also seen as a set
of equations, though much simpler z; = ..., which a hypothetical attack would

1 It applies also almost literally to algebraic attacks on block and stream ciphers, but
at the time, nobody really suspected this.
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evaluate to. We wish to look at any deterministic attack as a series of transfor-
mations that starts from (somewhat “complex”) initial equations and eventually
produces somewhat “simpler” ones (containing the solution to the system). Sim-
ilarly, following [10], starting from some notion of complexity that is adapted to
our initial equations, and makes them hard to solve, we can also try to construct
attacks that work exactly in this way. For this, still following [10], we need to
study (and find) methods that given some initial equations, give hope to gener-
ate some “simpler” equations. With such methods we hope to solve the system,
by successive simplifications. For example, one possible notion of complexity is
the non-linear degree. In Matsumoto-Imai and HFE systems [38, 42, 43] we have
initial equations that are quadratic and our goal will be to find some simpler,
linear equations. Most attacks known on these systems work in this way, e.g.
[42,43, 10, 20, 33].

Attacks that work in such a way, may be iterative with many steps, which
makes them hard to understand and study. For example it is far from being clear
what is the complexity of Courtois-Pieprzyk XSL attack on AES [17]. However,
again following [10], what one should study, and what is really interesting, is
what happens in one step of the attack. From the cryptological point of view
the main question will be not what is the exact complexity of an attack, but
rather if the attack is feasible in general (at least in some cases), and even
more importantly, how to completely avoid such attacks. For these questions,
the most important answers may already be given by looking at the beginning
of the attack process. Do we gain something ? Can we by some means gain
anything simpler from the initial equations ? Obviously it is always possible to
combine equations in some way, (and it is very simple for Boolean algebraic
equations over a finite filed). However, usually, we obtain other equations that
have nothing special and are in fact more complex than the initial equations.
Following [10], the interesting phenomenon to watch for is a type of “collapse in
the complexity”. For example, we take some multivariate equations of degree 2,
combine them algebraically to get an equation of expected degree 4, but when we
compute this equation its degree collapses from 4 to 3. Here we gain something,
some simplification arises. The heuristic is then that, if it can be done once, it can
be done several times and in many cases we end up by obtaining a full working
algebraic attack. In rare cases, it will obviously fail, but we know that designing
systems such that there is no “collapse of complexity” in some sense, will prevent
many attacks, whether they work well, or not. For example, building a cipher
with large random components(e.g. S-boxes) makes such cases of “complexity
collapse” to some degree very unlikely if not impossible, this whatever is our
definition of complexity.

When, as in many cases studied in this paper, the notion of complexity is the
non-linear degree of a multivariate polynomial form of a function, the existence of
“complexity collapse” can be characterised as follows. If an algebraic combination
of the original equations is of lower degree than expected, it means that there
exist a non-trivial and in some sense “simple” (e.g. low degree) function G such
that:

G (3}‘0, N S I Fo(xo, ce ,.’En_l), ce Fm_l(],‘o, ce ,an_l)) =0
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If we replace y; = Fi(xo, ..., T,—1) we get an algebraic relation between input
and output bits:

(05, Tn=15 Yoy-- - Ym—1) =0 (¥)

In these formulas the z; and the y; may be in GF(2), but may be also in
any other finite field GF(q). We are at the right point. It turns out that talking
about algebraic relations is more general than considering “a collapse in the
complexity”: algebraic relations may exist, be found and directly be used in an
attack, disregarding the initial complexity of the equations, that in some cases
is within no comparison (much more complex).

Undoubtedly, there are many cases in which the very existence of an alge-
braic “complexity collapse” or/and resulting algebraic relations at some level, is
somewhat trivial and inevitable. There are also many cases in which such occur-
rence can be an isolated phenomenon that does not lead to interesting attacks.
Yet, to make sure that a system resists to large class of possible attacks it is
sensible to avoid such situations whatsoever. (This concerns, as we will explain
later mainly Generalised Linear Cryptanalysis and direct algebraic XSL-type at-
tacks, and potentially other future attacks). Another way of seeing such design
criteria is to say that, in a sense, components of our system (or the whole system
itself) will be “more” indistinguishable from random components (e.g. random
functions or random permutations), and thus less attacks should be possible.

In the following sections we will explain briefly, how this general paradigm
of algebraic attacks applies to other contexts. This list is not exhaustive, and
we expect that many other areas of cryptographic security can be described in a
meaningful way in terms of “complexity collapse” and/or simple “I/O relations”
with respect to some (not necessarily algebraic/polynomial degree) notion of
complexity.

3.1 How to Build Secure Multivariate Public Key Cryptosystems
Here the conclusion follows immediately: for a trapdoor function to be secure
we need to make sure that there is no multivariate relations such as (x) that
contain less than, let’s say 289 different monomials (in general, for finite systems,
it is impossible to avoid the existence of algebraic relations, but their size will be
astronomical). In practice, for most systems, if there is no algebraic/multivariate
relations of size less than 249, there should be no practical algebraic attack on the
system (because we need to be able to recover the equations first). However, in
some special cases, equations of large sizes can be build directly by a method that
depends on the cipher, and then they can be used by substitution of variables.
Therefore the proposed bound of 280 gives a better guarantee.

4 Algebraic Attacks on Stream Ciphers

The algebraic attacks on stream ciphers have been introduced in 2003 by Cour-
tois and Meier [19,18]. Since then, the area has known an important research
activity with many interesting contributions, to quote only some, by Armknecht
and Krause [2,1], Cho and Pieprzyk [7], Courtois [14, 11], Hawkes and Rose [29)],
Lee, Kim, Hong, Han and Moon [35], Meier, Carlet and Pasalic [39], and others.
In this paper we only explain the main principle of algebraic attacks on stream
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ciphers from [19,11], and what are the resulting design criteria for components
of such ciphers.

The algebraic attack on stream ciphers is extremely general and applies po-
tentially to all ciphers that have some linear feedback (for example based on
LFSRs or cellular automata). We assume that in our cipher the first (linear)
component is as follows. Let © = (xo,...,2n,—1) € GF(¢)™ be the state of this
component. We assume that the cipher is regularly clocked (some relaxations
are possible, see [19,18]) and at each clock the linear state x is updated by some
multivariate linear function L. This means that at each clock x becomes L(z),
and if K = (Ky,...,K,_1) is the initial state, at time ¢ the state will be called
z® and by definition we have 2() = L!(K).

Then we assume that the state of the linear component is supplied to the
second “filter/combiner” component that outputs the keystream (it may output
one or several bits at a time). This output component can be stateless or stateful:
in the second case it also has internal memory bits that are updated at each clock.
In this case, we have in addition to the linear feedback in the first component,
a non-linear feedback in the second component (but usually of much smaller
size/importance than the linear feedback).

Let [ be the number of memory bits in the second component, that before and
at the time t are a(()t_l), e ,al(t__ll). In particular, for stateless filters/combiners
1 is 0, for example when a Boolean function is used to filter/combine the state
bits of one or several LFSRs. The initial inner state is a(~Y, exists before ¢ = 0,
and can be anything (it is unknown in the attack and algebraic attacks tend

to eliminate all the monomials in the a;). At each clock ¢ = 0,1,2,..., the
combiner outputs m bits y(()t), . ,yglh for t = 0,1,2,.... For example, if the

ciphers uses a single Boolean function to combine input bits, we have simply
m = 1. In general, the second component can be described as a pair of functions
F = (F,F) : GF2)"" — GF(2)™*!, that given the current state and the
input, compute the next state and the output:

1 1
P {(y(()t),...,yg)_l) :Fl(x(()t),...,xgltll,aét ),...,al(t_l ))
: t t t t t—1 t—1
(a(()),...,al(Jl):Fg(:c(())7...,x£l)_17aé ),...,ULL1 ))

The most general form of an algebraic attack on stream ciphers following
closely [11,14, 19] works as follows.

e We assume that L is known (for example the LFSRs used in the cipher are
known or can be guessed/revovered).

e We consider M consecutive states of the cipher.

e Find (by some method that is very different for each cipher) one (at least,
but one is enough) multivariate relation G between the state bits z; and
some M consecutive outputs, for example:

Glzo,x1,. . p1; ¥, ...,y ™M D) =0
We assume that G is of degree d in the x; (the degree in the y; may also be
important, but usually will not influence the total attack complexity).
e By recursive structure of the cipher, for any initial state K and for any ¢,
the same equation will apply to all consecutive windows of M states
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G(LNEK); y B, ... .y =0

e The y®,...,y**+M=1 are replaced by their values known from the observed
output of the cipher.

e Due to the linearity of L, for any ¢, the degree of these equations is still d.

e For each keystream bit, we get a multivariate equation of degree k in the x;.

e Given many keystream bits, we inevitably obtain a very overdefined system
of equations (i.e. great many multivariate equations of degree d in the Kj;).

e To solve these equations we may apply the XL algorithm from Eurocrypt
2000 [13], adapted for this purpose in [18] and other improved elimination
techniques such as computing Grobner bases combined with linear algebra,
see [24, 25]. However, if we dispose of a sufficient amount of keystream, (which
is frequently not very big, see [19]), all these are not necessary.

e If the amount of keystream available is large enough, we use a so called
linearization method that is particularly simple. There are about T' = (Z)
monomials of degree < d in the n variables K; (assuming d < n/2). We
consider each of these monomials as a new variable V;. Given about (Z) +M
keystream bits, and therefore R = (Z) equations on successive windows of
M bits, we get a system of R > T linear equations with T' = (Z) variables V;
that can be easily solved by Gaussian elimination on a linear system of size
T. The time to solve such a system is 7% with in theory w < 2.376 [8] but
in practice for small systems, it is believed that one should rather consider
w that is closer to 3 than to 2.376.

4.1 How to Build Secure Stream Ciphers
For stream ciphers in which the second component does not have internal mem-
ory, the case M > 1 does not make a lot of sense, and if we wish the cipher to
avoid algebraic attacks, we get a requirement on the second component that is
identical to our requirement on public key trapdoor functions. There should be
no “simple” algebraic relations between its inputs and outputs such as:

G (20, Th-1; Y0+ Ym—1) =0 ()

Similarly, in the general case [ > 1 we need to avoid the existence of “not
too complex” equations (that eliminate the internal state bits a;) of type:

G(anxla"'axn—la y(O)v"'7y(M71)) :O (**)

For stream ciphers however, the notion of “simple” and “complex” equations
changes. It is no longer the total size of these equations (number of monomials)
that matters, but their degree in the x; (their degree in the y; can be large,
provided that the total size of the equations is not too big and that there is
some method to generate these equations from the description of the cipher).
Our recommandation, for ciphers that aim at 2'2® security is that there should be
no G that can be efficiently written (for example using up to 2'2® of memory)
with degree d < 16. (We do not exactly require that they do not exist, and for
some high d there may exist large relations with, for example 2'°° monomials,
that are not a problem as long as there is no efficient algorithm to recover/write
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and otherwise use them). For higher security levels, for example military-level
requirements of type 225, we recommend a cautious d > 32. For specific ciphers
these numbers may be lower but then they require a careful study if they will
not be broken by fast algebraic attacks [14,1,29].

It is certainly possible to obtain components that satisfy these criteria by
using sufficiently large random S-boxes (the exact size will depend a lot of the
exact construction). Otherwise, proposing constructive methods to obtain com-
ponents that will (if possible provably) satisfy these criteria is an important open
problem. For Boolean functions, this problem can be rephrased as constructing
“good” Boolean function that in addition to classical non-linearity criteria re-
spond also to the new criterion of “algebraic immunity”. It also remains an open
problem, see [39].

5 Block Ciphers and Algebraic Relations

This paper is about a simple idea of studying algebraic relations on different
components. In this paper we will not try to summarise all the results but the
outcome of this approach on stream ciphers and multivariate public key schemes
was quite devastating, see among others [1,2,7,10-12, 14,1620, 24, 25, 29, 33,
35, 39,42-44,13]. Several classes of schemes were shown to be substantially less
secure than expected, and sometimes badly broken. But the real question that
many people are asking is, does this type of attacks matter also for block ciphers
o

At present many cryptologists still believe that they don’t matter (at all).
Yet, from one point of view there is no doubt that it does ! For example with
the polynomial approximation attack of [32], Jakobsen was the first to claim
that to obtain secure ciphers “/...J it is not enough that round functions have
high Boolean complexity. [...]” . He proposes already to avoid functions that
have simple algebraic properties in the design of block ciphers (but his warning
was never taken seriously). Regarding the AES S-box, in [9] and in [15] in these
proceedings, Courtois shows that it is possible to construct, by several very
different methods, many block ciphers based on the inverse in GF(2") that
satisfy all the known design criteria on block ciphers, yet remain very very weak.

These schemes are insecure, because the Inverse-based Rijndael-type S-boxes,
though very complex when regarded as a function, can be characterised in several
ways by algebraic relations, cf. [15,17,40]. Here we are concerned with attacks
being forms of generalised linear cryptanalysis, see [28,34, 9, 15]. Though these
attacks techniques clearly do evolve into general attacks that can be applied
potentially to any block cipher, the insecure ciphers constructed in [15] remain
very special contrived ciphers.

On the contrary, for ciphers such as DES and AES, that use relatively small
S-boxes and a lot of diffusion that connects the outputs of one S-box to many
other S-boxes in the next rounds, (wide trail strategy of AES designers [21, 22]),
we expect that the things should be very different. In [15, 9], heuristic arguments
are given to the effect that, the impact of generalised linear cryptanalysis on such
ciphers (e.g. AES) is expected to be low, as long as they resist well to linear
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cryptanalysis. Therefore, it seems so far that the algebraic relations may do not
really matter so much for AES and similar ciphers.

6 Global Algebraic Attacks on Block Ciphers

We see that, finding attacks on ciphers such as AES, remains an ambitious
task, even given the existence of algebraic relations on the S-boxes. Unfortu-
nately, there is yet another attack strategy, published in 2002 by Courtois and
Pieprzyk, that is designed to render the “wide trail strategy” useless. It can be
called a direct/global algebraic attack strategy, or exact algebraic approach.
At the origin, it also uses the existence of algebraic relations for the individual
components of the cipher. We do not however try to connect the specific mono-
mials that appear in one equation to another equation, which may be very hard,
but just write the equations for the whole cipher, to obtain a global system of
equations that uniquely characterizes the key to be found. Then we see if it is
possible (in theory and/or in practice) to solve such a system of equations.

This type of approach, if proven to work efficiently in practice, is not less
than a major revolution in the field of block cipher cryptanalysis. This is be-
cause, except few very weak ciphers, all the general attacks known up till now
for block ciphers are attacks that combine “approximations”, that are some
properties (linear, differential, higher-order differential, polynomial approxima-
tion etc..) true with some probability that except for some very weak ciphers is
different from 1. This “combine approximations” paradigm has three important
consequences. First of all, the complexity of the attacks must grow exponentially
with the number of rounds. Secondly, the number of plaintexts needed in an at-
tacks also grows in the same way (and may be the main limitation in practice).
Finally, ciphers with good diffusion (wide trail strategy) force the attacker to
use several approximations in parallel in the same round, and the efficiency of
the attacks further decreases.

The “exact algebraic” approach that exploits equations that are true with
probability 1 that exist locally (for example for each S-box) has the potential
to remove simultaneously the three aforementioned obstacles. The complexity is
not longer condemned to grow exponentially with the number of rounds. The
number of required plaintexts may be quite small (e.g. 1). And the wide trail
strategy should have no impact whatsoever on the complexity of the attack.

6.1 How Secure are Today’s Block Ciphers ?
Some people dismiss the idea of an algebraic attack on AES, as being too simple
and too naive to be true. Our impression is that, it is rather the current thinking
about the security of block ciphers that is very naive.

We get the impression that, if we mix sufficiently many rounds of any con-
struction, it will be secure. In practice however, the ciphers are meant to be
rather fast, have a limited number of rounds, but yet the security claims made
on them are extremely ambitious. During the AES contest many authors pro-
posed ciphers claimed to be indistinguishable from a random permutation within
less than 22°6 computations. This is a huge number. With the Moore’s law, such
keys should remain secure against brute force until around 2200. This gives us
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200 years to invent new mathematics, new algorithms, and new attacks that will
break the cipher faster than the exhaustive search before it is outdated. Who
can make security predictions for such a long period of time, knowing that so
many security claims are disproved every year ? Moreover, 22°6 is close to the
number of atoms in the universe, therefore it also possible that the computers
will never actually have such a computing power. This means that we are left
with infinite time to find better attacks. We believe therefore that betting that a
cipher cannot be distinguished from a random cipher faster than by brute force,
may be an infinitely risky bet for 256-bit ciphers. Our guess is rather that all the
block ciphers with 256-bit keys that were submitted to AES, will some day be
broken faster than by exhaustive search, simply because our current knowledge
about the real security of block ciphers is yet very low.

6.2 Who Invented Algebraic Attacks on Block Ciphers ?

According to a visionary recommandation of Shannon from his 1949 paper [45],
breaking a good cipher should require: “as much work as solving a system of
simultaneous equations in a large number of unknowns of a complex type”. There
are many ways of interpreting this statement. For example we may think about
multivariate quadratic equations with Boolean variables, the large number of
unknowns may mean a large number of monomials, unknowns of a complex type
may mean monomials of high degree (or that combine variables that come from
remote locations inside a cipher).

From another point of view, it is a trivial folklore attack that anyone can
think of. Indeed, it is easy to see that, for any practical cryptographic system
that relies on computational (not information-theoretic) security, we can write
a system of Boolean equations such that solving it allows to find the key. Then,
solving a general system of Boolean equations is an NP-hard problem, and solv-
ing non-linear systems of large size is expected to be hopeless. However, it turns
out that, what makes such problems hard is not so much the number of vari-
ables or monomials, but the balance between the number of equations and the
number of monomials that appear in these equations. From this, we expect that,
systems that are overdefined, sparse, or both, should be much easier to solve
than general systems of similar size. As far as we know, before 1998-2000, the
scientific community were not aware of this fact, and easily believed that large
systems of equations are necessarily hard to solve. When the XL attack was first
introduced by Courtois, Klimov, Patarin and Shamir [13], as a development of
earlier ideas of Shamir and Kipnis [44], things started to change. In particular,
specialists of elimination methods such as Grobner bases that have been stud-
ied for many years now, see for example [46,24,25], started to realise the full
potential of these and other algebraic techniques to solve problems that arise
in cryptography. It turns out that the cryptographic instances of multivariate
systems of equations have several interesting properties that may and do help to
solve them efficiently. Among these properties we will quote the fact that they
are over very small finite fields, they usually have a unique solution, they do not
have solutions in extensions fields or at infinity, and again, they are frequently
over-determined, and sparse (with several possible notions of sparsity).
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At present the area of algebraic attacks is full of open problems that should
be solved with time. A lot remains to be done in discovering cryptanalytic appli-
cations of already existing algebraic methods of solving systems of polynomial
equations. Similarly, specific systems of equations that arise in cryptography
should allow (and already do) to better understand why certain very general al-
gebraic algorithms (such as Buchberger or F5 algorithms) for solving equations
work well in some cases, and do fail in some other cases. Finally, new meth-
ods of solving algebraic equations should and will be invented, motivated by
cryptographic attacks.

6.3 The Structure of Algebraic Attacks

Global algebraic attacks on block cipher following Courtois and Pieprzyk (previ-
ously imagined also by Shannon, Patarin and probably few others) contains the
following three stages, that can (and probably should) be studied separately.

1. Write an appropriate initial system. Write a system of equations that,
given one or several known plaintexts, uniquely characterizes the key. This
system should be as over-determined (also called overdefined) and as sparse
as possible. This can be measured by the initial ratio R;y;/Tin; between the
number of equations R;,; in the system and the total number of monomials
Tini that appear in it. It can be for example 1/4 or 1/3. It is not clear what
is the optimal setting for algebraic attacks: we may try simply to achieve
a lowest R;,;/Tin; possible, however for some systems with a higher initial
ratio, but a lower global size, or some specific additional properties, the
overall complexity of an algebraic attack may be lower.

2. Expand it. The second step is an expansion step. The goal is, starting from

the original R;,; equations with T},; monomials, to produce (for example by
multiplying the equations by some well chosen polynomials) another (much
bigger) set of R equations with 7" monomials. The goal is to have the new
ratio R/T close (or bigger than) 1. If R > T it means that the set of equations
is redundant, and we should think of a better method of generating them
(to avoid redundancies) and also of a better method of counting how many
equations we have, that are not trivial linear combinations of other equations,
and therefore serve no purpose.
Here the main criterion of “success” is not so much the final ratio R/T
(that simply must be somewhat close to 1, e.g. 0.9) but the size T. However
it remains possible that some attacks with a worse (larger) T and better
(bigger) R/T do in fact work better (cf. next step).

3. Final in place elimination. The final step should be an “in place” elimi-
nation method that given an “almost saturated system” with R/T close to
1, finds a solution. On proposed method to achieve this is by generating a
completely saturated system (the T’ method proposed by Courtois in [17,
16]. It can also be achieved by computing a Grébner basis of the expanded
system, and probably by other means. The (heuristic) requirement is that
the memory required in this third step should not exceed T', otherwise maybe
we need to improve rather the second (expansion) step.
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6.4 Applicability of Algebraic Attacks

There are reasons why, overdefined and/or sparse systems are bound to appear
frequently in cryptography. In most settings, there is no cryptographic solutions
with unconditional security, and we have to rely on computational security. A
relatively short (128 bits or less) key will be usually used many times, to produce
much more information: many known plaintexts, many signatures, etc. In public
key cryptography, a proof of security would allow to be certain that each utiliza-
tion of the cryptographic scheme, does not leak useful information. Secret key
schemes do not have such proofs of security, and the more we use it, the more the
problem become overdefined (if we do not introduce additional variables). It is
also in secret key cryptography, that the problems may become really massively
overdefined, if we think about the amounts of data that can be encrypted with a
single key, on a satellite link. Another problem is a consequence of the fact that
many ciphers are designed to be implemented in hardware with a very low gate
count. This allows to design an algebraic attack with relatively small umber of
variables and a very small number of monomials (very sparse).

These are theoretical considerations. The present experience of algebraic at-
tacks is that, their complexity should grow “nearly polynomially” in the number
of rounds and in the block size, with however a really huge constant called I" that
does depend only on the S-box. (This for all known versions of the XSL attack,
and for both resulting definitions of I', see [17]). For a random S-box (and also
for many other S-boxes that have no special properties such as algebraic rela-
tions) this constant I" can be shown to be double-exponential in s, the size of the
S-box in bits. In [17], it appears that already 4-bit S-boxes, should be sufficient
for 2128 security and probably beyond. For the Rijndael S-boxes, it is possible
to see that I' grows only simply exponentially in s. Then it seems that even
for s = 8 algebraic attacks faster than 2!2® may exist, see [17,40], but we are
clearly on the frontier of applicability of algebraic attacks. Thus, it seems that
in fact algebraic attacks are only possible for some very special ciphers. Apart
from Serpent and Rijndael, we are not aware of a single other block cipher for
which even a current (probably too optimistic) estimations of the complexity of
algebraic attacks would give less than the exhaustive search.

6.5 Is AES Broken ?

It is important to say: we really do not know. It is possible that, one of the
XSL attacks works quite well, or a simple combination of already known attacks
already breaks AES. Our favorite candidate in this respect would be to combine
the Murphy-Robshaw idea of using equations over GF(256) from [40], with one
of the XSL expansion attacks from [17], and replace the final 7" method by a
(presumably better) advanced Grobuner bases algorithm such as Faugere’s F5
[25]. This might simply break AES. But it is also possible that it fails quite
miserably for some fundamental reason that is not yet understood. Then, a
slight modification of the attack could still remove the theoretical obstacle and
give an attack that might again work in practice. Studying algebraic attacks on
block ciphers in all due details is outside the scope of this paper, and remains
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largely to be done. Both theoretical and experimental results will probably be
needed to get the full picture.

6.6 How to Avoid Algebraic Attacks on Block Ciphers

At any rate, we advocate to take the algebraic attacks on block ciphers very
seriously and to design block ciphers that do avoid such attacks. The resulting
security criterion is, still more or less the same. The S-boxes of a block cipher
should avoid the existence of “simple” algebraic relations of type:

G(xoy- oy Ts—15 Yo,---,Ys—1) =0 (%)

The exact definition of “simple” that would prevent all algebraic attacks
on block ciphers is not obvious to give. We need to avoid equations that, for
some representation, and some system of equations, give a low value of I'. For
example following [17], we should avoid systems that are too overdefined or/and
too sparse.

This should not be very hard to achieve. We believe that using random S-
boxes on 8 bits should be about sufficient to achieve 128-bit security (though not
for sure). We recommend in fact to construct bigger S-boxes that have no alge-
braic relations starting from random bijective 8-bit S-boxes. For higher security
requirements such as military applications, we advocate to make mandatory a
requirement that the cipher should use at several places inside the encryption,
a random S-box of at least 16 bits.

7 The Future of AES

In our opinion, AES should still be recommended as the best choice of encryption
algorithm for applications that do not require long-term security. We believe
however that NIST should set an expiration date for AES, that could be 2010.
It could be extended it later, according to the developments in cryptanalysis, but
we believe that in 2010 it will be much wiser to replace AES by a better cipher,
being not vulnerable to algebraic attacks, generalised linear cryptanalysis with
multiple approximations, and other attacks that will probably be invented by
2010. The replacement should be done even if it turns out that known algebraic
attacks on block ciphers do not work, and all other attacks that exploit algebraic
relations (e.g. generalised linear cryptanalysis) do not break AES either.

In addition, we believe that a cipher such as AES can only be really credible
as the world’s standard all-purpose cryptographic high security lock, if there
is a series of AES challenges. They could range from 100 to 1 million dollars,
and be offered for solving various important open problems that in a different
manner do compromise the security of AES, up to a total break that is done
or doable in practice. This would allow to monitor the progress in the security
of AES and to ascertain a very serious status of this scheme, compared to so
many other schemes that are broken every year. For people that do not have
expertise in cryptography, and cannot tell between real or fake security experts,
such challenges, are the only way of knowing that the AES is indeed not yet
broken, and also to see that some people take its security seriously enough to
offer 1 million dollar to whoever demonstrates it can be broken in practice.
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8 Conclusion

Algebraic attacks exploit the existence of multivariate relations on the appropri-
ate cryptographic component. They do allow to break many multivariate public
key schemes and stream ciphers. For block ciphers, their effectiveness is far from
being clear. Yet, it is very sensible to avoid the existence of such algebraic re-
lations for non-linear components of block ciphers. This not only because of
algebraic attacks, but also because of generalised linear attacks: examples of
contrived ciphers are known that are not secure with relation to these.

Thus, we propose (if possible) to simply avoid multivariate and algebraic
relations in all types of cipher components. This extends the current paradigm
of avoiding “bad” Boolean functions, or/and “bad” vectorial functions (S-boxes).

One method to achieve this would be to construct appropriate cryptographic
components with guaranteed “algebraic immunity”. A much simpler method, is
to use sufficiently large random S-boxes. This should prevent all known attacks
on block ciphers: linear/differential cryptanalysis with generalisations, all kinds
of generalised linear attacks as described in [15], and also any kind of exact
algebraic attacks such as XSL [17].
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