Isomorphism of Polynomials

Nicolas T. Courtois
Paris 6 and Toulon University
Jacques Patarin, Louis Goubin
Bull Smart Cards and Terminals, France

Summary

1. What is Isomorphism of Polynomials (IP) ?
2. Cryptographic relevance.
3. Related problems:
\diamond It generalises the Graph Isomorphism (GI).
\diamond It generalizes to Morphism of Polynomials (MP).
4. How difficult it is?
5. Advances in attacks: $q^{n^{2}} \leadsto q^{n \sqrt{n}} \leadsto q^{\mathcal{O}(n)} \leadsto q^{n / 2}$

Isomorphism of Polynomials (IP)

Given two sets of \mathbf{u} multivariate polynomials with \mathbf{n} variables over a finite field \mathbf{F}_{q}.

$$
\begin{array}{ll}
b_{k}=\delta_{k}+\sum_{i} \mu_{i k} a_{i}+\sum_{i, j} \gamma_{i j k} a_{i} a_{j}+[\ldots] & (1 \leq k \leq u) . \\
y_{k}=\delta_{k}^{\prime}+\sum_{i} \mu_{i k}^{\prime} x_{i}+\sum_{i, j} \gamma_{i j k}^{\prime} x_{i} x_{j}+[\ldots] & (1 \leq k \leq u) . \tag{B}
\end{array}
$$

IP: Find two affine bijections S and T such that:

$$
\mathcal{B}=T \circ \mathcal{A} \circ S
$$

An example with $u=n=5$ quadratic equations over \mathbf{F}_{2} :

Our new methods allow to solve it by hand:

IP and asymmetric cryptography

Some special properties allow to compute \mathcal{A}^{-1}.
Secret key allows to compute $\mathcal{B}^{-1}=S^{-1} \circ \mathcal{A}^{-1} \circ T^{-1}$.

Main unbroken candidate: HFE [Patarin Eurocrypt'96].
Solving IP is not enough to break HFE.

Many other schemes are in some way related to IP.

Courtois, Goubin, Patarin

IP in cryptanalysis

1. Many schemes have been broken without recovering the secret key. (no IP solving).

- 2 Shamir schemes. [Stern, Coppersmith, Vaudenay]
- Matsumoto and Imai's C^{*} and [C] schemes [Patarin]
- Patarin's D^{*}, Little Dragon, S-boxes, Scotch [authors]

2. Few schemes have been broken with the underlying IP problem.

- D^{*} [Courtois 97].
- 'Oil and Vinegar' [Kipnis, Shamir Crypto'98]

IP in authentication

(associated decision problem)

- IP has a zero-knowledge interactive proof. \sim authentication algorithm.
- It can be transformed into a signature scheme.

IP $=$ Harder Graph Isomorphism generalization:

Graph Isomorphism $=$ very particular case of IP:

- $x_{i} x_{j}$ says that vertices i, j are connected:

$$
a_{1} a_{4}+a_{1} a_{3}+a_{2} a_{3}+a_{2} a_{4}
$$

$$
x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{4}+x_{3} x_{4}
$$

- Isomorphisms of Polynomials that permute variables are Graphs Isomorphisms.
- Other IP solutions do not proceed from a Graph Isomorphism.
- Construction: A particular instance of IP equivalent to finding a graph isomorphism. (extended version of the paper)

Conclusion

IP is at least as difficult as Graph Isomorphism. (not likely to be polynomial ?!)

Non-IP problem has a constant-round interactive proof:

- P : produces equations isomorphic to either \mathcal{A} or \mathcal{B}.
- V: guesses which one.

Theorem: If Deciding(IP) is $\mathcal{N} \mathcal{P}$-complete, the polynomial hierarchy collapses to ($\mathcal{P}, \mathcal{N} \mathcal{P}, \mathcal{I P}$).

Proof: As for GI [Boppana, Håstad, Zachos 87].

Morphism of Polynomials (MP)

IP with S and T that are no longer bijective.
Non-commutative MP version: K is a ring.

$$
\begin{gathered}
\text { Example: } \\
\mathcal{A}:\left\{\begin{array}{c}
b_{1}=a_{1} a_{1}^{\prime} \\
\vdots \\
b_{7}=a_{7} a_{7}^{\prime}
\end{array}\right. \\
\mathcal{B}:\left(\begin{array}{ll}
y_{1} & y_{3} \\
y_{2} & y_{4}
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & x_{3} \\
x_{2} & x_{4}
\end{array}\right) \cdot\left(\begin{array}{ll}
x_{1}^{\prime} & x_{3}^{\prime} \\
x_{2}^{\prime} & x_{4}^{\prime}
\end{array}\right)
\end{gathered}
$$

Get $\mathcal{B}=T \circ \mathcal{A} \circ S$ (or how to multiply 2×2 matrices with only 7 multiplications).

Courtois, Goubin, Patarin
\& Proven for finite fields and \mathbb{Q}.

Idea of proof: It allows to compute the rank of a tensor. Tensor rank problem is $\mathcal{N} \mathcal{P}$-complete [Håstad 90].
\& Non-commutative MP solving would lead to better algorithms, e.g. fast matrix multiplication.

It also seems extremely hard in practice.

How secure is IP ?

Between hard and easy $\mathcal{N P}$ problems.

GI	 $\mathbf{I P}$ $\mathbf{M P}$ open problem for $n=9$

Solving IP

1. Exhaustive search $\leadsto q^{n^{2}}(q=$ base field size $)$.
2. Improved method $\leadsto q^{n \sqrt{n}}$.
3. Advanced methods.

- Inversion attack for non bijective forms $\leadsto q^{\mathcal{O}(n)}$.
- The to and Fro attack $\leadsto q^{\mathcal{O}(n)}$
- Combined power attack: as low as $\leadsto q^{n / 2}$ (S, T linear and with quadratic equations.)

The main idea

$\%$ We start from some initial equation(s) on S or T.
\& We use equations of \mathcal{A} and \mathcal{B} to deduce some other equations on S or T.

To And Fro

Starting equations on inputs:

$$
\left\{\begin{aligned}
\mathcal{B} & \\
& \mathcal{A} \\
s(1) & =1 \\
s(2) & =7
\end{aligned}\right.
$$

We get 3 dependent equations on inputs:

$$
\left\{\right.
$$

Equations on inputs give equations on outputs:

It gives 3 independent equations on outputs (!).

$$
\left\{\begin{array}{rlr}
\mathcal{B} & & \mathcal{A} \\
5 & = & t(1) \\
16 & = & t(4) \\
24 & =t(23)
\end{array}\right.
$$

Miracle: 2 equations ~ 3 equations (!).
We use non-linearity to 'boost' the initial knowledge.
n such equations \leadsto give S or T.

Even better algorithms

$q^{n / 2}$ Algorithm?
Two problems in doing better that q^{n} :

Problem 1

Find only 1 equation on $S \leadsto \mathcal{O}\left(q^{n}\right)$.
We have designed a birthday-paradox approach.

Problem 2

The ' FRO ' part requires to compute \mathcal{A}^{-1} and $\mathcal{B}^{-1}-\mathcal{O}\left(q^{n}\right)$.
Idea of 'Boosting Function' that amplifies an initial information on inputs and gives still information on inputs of \mathcal{A} of \mathcal{B}.

Differential Solving:

Given a quadratic form \mathcal{A} and $\triangle x=c$ and $\triangle y=d$, it is easy to find x and x^{\prime} such that:

$$
\left\{\begin{array}{rll}
x-x^{\prime} & =c \\
\mathcal{A}(x)-\mathcal{A}\left(x^{\prime}\right) & = & d
\end{array}\right.
$$

Conclusion

Isomorphism of Polynomials is an important problem in both cryptography and cryptanalysis.

It's difficulty lies in between two famous problems: GI (easy but not polynomial) and MP (hard).

Questions:

\otimes Even better attacks for IP ?

\otimes How difficult are different variations of IP and MP ? (in both theoretical and practical aspects).
influence of $\frac{u}{n}$ value, only S is secret, commutative/not
\otimes Can IP algorithms be generalized to solve MP ?
\otimes Is MP really that hard ?
\otimes Asymmetric cryptosystems based on MP problem ?

