Algebraic and Slide Attacks on KeeLoq

FORDHAM UNIVERSITY

Nicolas T. Courtois ¹ Gregory V. Bard ² David Wagner ³

 $(\mathbf{\Theta})$

- ¹ University College of London, UK
- ² Fordham University, NY, US
- ³ University of California Berkeley, US Be

Roadmap

Berkeley

FORDHAM UNIVERSITY

m

- KeeLoq.
- Direct algebraic attacks,
 - 160 rounds / 528.

Periodic structure =>

- Slide-Algebraic:
 - 2¹⁶ KP and about 2⁵³ KeeLoq encryptions.
- Slide-Determine:

- 2²³ - 2³⁰ KeeLoq encryptions.

KeeLoq

Block cipher used to unlock doors and the alarm in Chrysler, Daewoo, Fiat, GM, Honda, Jaguar, Toyota, Volvo, Volkswagen, etc...

â

FORDHAM UNIVERSITY

Courtois, Bard, Wagner, FSE 2008

Our Goal:

To learn about cryptanalysis...

Real life: brute force attacks with FPGA's.

How Much Worth is KeeLoq

Berkeley

Â

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

- Designed in the 80's by Willem Smit.
- In 1995 sold to Microchip Inc for more than 10 Million of US\$.

How Secure is KeeLoq

FORDHAM UNIVERSITY

Â

According to Microchip, KeeLoq should have "a level of security comparable to DES". Yet faster.

Miserably bad cipher, main reason:

its periodic structure: cannot be defended. The complexity of most attacks on KeeLoq does NOT depend on the number of rounds of KeeLoq.

Courtois, Bard, Wagner, FSE 2008

Remarks

Berkelev

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

- Paying 10 million \$ for a proprietary algorithm doesn't prevent it from being very weak.
- In comparison, RSA Security has offered ("only") 70 K\$ as a challenge for breaking RC5.
 - For much less money they have the algorithm that (visibly) nobody can break.
- For AES there is no challenge/price, not even 1 dollar, and according to an Internet survey (cf. <u>www.cryptosystem.net/aes/</u>), 40 % of people tend to believe that AES is already broken...

Description of KeeLoq

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

KeeLoq Encryption

Ê

Block Cipher

FORDHAM UNIVERSITY

- •Highly unbalanced Feistel
- •528 rounds
- •32-bit block / state
- •64-bit key
- •1 bit updated / round
- •1 key bit / round only !

Sliding property:

periodic cipher with period 64.

Courtois, Bard, Wagner, FSE 2008

- 1. Initialize with the plaintext: $L_{31}, \ldots, L_0 = P_{31}, \ldots, P_0$
- 3. The ciphertext is $C_{31}, \ldots, C_0 = L_{559}, \ldots, L_{528}$.

Figure 1: KeeLoq Encryption

10 Courtois, Bard, Wagner, FSE 2008

Notation

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

g_k() - 16 rounds of KeeLoq, prefix of f_k().

We have: $E_k = g_k \circ f^8_k$. 528 = 16+8*64 rounds.

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

Algebraic Attacks on KeeLoq

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK Â

KeeLoq can be implemented using about 700 GE.

=> "direct" algebraic attack: write equations+solve.

Two methods:

- ElimLin/Gröbner bases
- Conversion+SAT solvers.

Algebraic Attacks on KeeLoq

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

Â

We have found MANY attacks.

This paper: only two of them.

(the fastest ever found – not algebraic and the simplest ever found - algebraic)

Algebraic Cryptanalysis [Shannon]

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

Breaking a « good » cipher should require:

"as much work as solving a system of simultaneous equations in a large number of unknowns of a complex type"

[Shannon, 1949]

15 Courtois, Bard, Wagner, FSE 2008

What Can Be Done?

As of today, we can:

ElimiLin (Method 1):

With ElimLin we can break up to 128 rounds of KeeLoq faster than brute force. 128 KP counter mode.

Conversion+MiniSAT (Method 2):

Also up to 160 rounds of KeeLog but

2 known plaintext (cannot be less).

Courtois, Bard, Wagner, FSE 2008

Our Equations

Can be downloaded from:

www.cryptosystem.net/aes/toyciphers.html

Beyond?

KeeLoq has additional weaknesses.

There are much better attacks.

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

Berkeley

FORDHAM UNIVERSITY

• Complete periodicity [classical].

Ρ	Ρ	Ρ

• Incomplete periodicity [new] – harder.

- KeeLoq: Q is a functional prefix of P. Helps a lot.

Sliding Attacks

Berkelev

FORDHAM UNIVERSITY

Classical Sliding Attack [Grossman-Tuckerman 1977]:

- Take 2^{n/2} known plaintexts (here n=32, easy !)
- We have a "slid pair" (P_i,P_j) s.t.

KeeLoq and Sliding

Berkeley

FORDHAM UNIVERSITY

Apply Classical Sliding? Attack 1.

- Take 2^{n/2} known plaintexts (here n=32, easy !)
- We have a "slid pair" (P_i,P_j) s.t.

Classical Sliding – Not Easy

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

Classical Sliding Attack [Grossman-Tuckerman 1977]:

- Take $2^{n/2}$ known plaintexts (here n=32, easy !)
- \rightarrow We have a "slid pair" (P_i, P_i).

. . . .

Classical Sliding –Not Easy

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

Classical Sliding Attack [Grossman-Tuckerman 1977]:

- Take $2^{n/2}$ known plaintexts (here n=32, easy !)
- > We have a "slid pair" (P_i, P_j) .

Algebraic Sliding

Berkeley

FORDHAM UNIVERSITY

Ð

Algebraic Attack:

Berkeley

FORDHAM UNIVERSITY

m

We are able to use C_i,C_j directly ! Merge 2 systems of equations:

System of Equations

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK Â

64-bit key. Two pairs on 32 bits. Just enough information.

Attack:

- Write an MQ system.
 - Gröbner Bases methods miserably fail.
- Convert to a SAT problem
 - [Cf. Courtois, Bard, Jefferson, eprint/2007/024/].
- Solve it.
 - Takes 2.3 seconds on a PC with MiniSat 2.0.

Attack Summary:

Berkelev

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK Ŵ

Given about 2¹⁶ KP.

We try all 2^{32} pairs (P_i, P_j) .

- If OK, it takes 2.3 seconds to find the 64-bit key.
- If no result early abort.

Total attack complexity about 2⁶⁴ CPU clocks which is about 2⁵³ KeeLoq encryptions.

KeeLoq is badly broken.

Practical attack, tested and implemented.

Conclusion

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK Ŵ

For the first time ever,

- a full industrial block cipher have been totally broken by an algebraic attack.
- The full key can be recovered on a PC given 2¹⁶ KP.

What Happened?

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK Ê

Power of Algebraic Attacks: Any cipher that is not too complex is broken... (!)

- Problem: We hit the "wall" when the number of rounds is large.
- Power of Sliding Attacks: their complexity does NOT depend on the number of rounds.

These two combined give a first in history successful algebraic attack on an industrial block cipher.

Faster Attacks on KeeLoq

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

Algebraic Attacks on KeeLoq

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

Much faster attacks are possible (!)

With about 2³² KP.

```
The whole dictionary
```

(in fact a proportion, like 60% can be sufficient)

(Our fastest Slide-Determine Attack is equivalent to 2²³ KeeLoq encryptions. As fast as reading the dictionary. Mush faster than obtaining 2³² KP.

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

â

f_k() – 64 rounds of KeeLoq

g_k() - 16 rounds of KeeLoq, prefix of f_k().

We have: $E_k = g_k \circ f^8_k$. 528 = 16+8*64 rounds.

Random Functions

Berkelev

n bits -> n bits

The probability that a given point has i pre-images is 1 / ei!.

Fixed points:

number of fixed points of $f(x) \Leftrightarrow$ number of points such that g(x)=0with g(x) = f(x)-x.

Ŵ

FORDHAM UNIVERSITY

Fixed Points for 64 rounds of KeeLoq

Berkeley

f_k is expected to have 1 fixed points for $1-1/e \approx 0.63$ of all keys.

i_k is expected to have 2 fixed points
for 1-2/e ≈ 0.26 of all keys.

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

Fixed Points for 512 rounds

Berkeley

FORDHAM UNIVERSITY

How to Solve It?

Berkeley

FORDHAM UNIVERSITY

Courtois, Bard, Wagner, FSE 2008

Theorem [Flajolet, Sedgewick page 132]

Berkeley Fordham University

Proposition C.2. Let $\mathcal{A} \subset \mathbb{N}_+$ be an arbitrary subset of cycle lengths, and let $\mathcal{B} \subset \mathbb{N}_+$ be an arbitrary subset of cycle sizes. The class $\mathcal{P}^{(\mathcal{A},\mathcal{B})}$ of permutations with cycle lengths in A and with cycle number that belongs to B has EGF as follows:

$$g(z) = \mathcal{P}^{(\mathcal{A},\mathcal{B})}(z) = eta(lpha(z)), \hspace{1cm} ext{where} \hspace{1cm} lpha(x) = \sum_{i \in A} rac{x^i}{i} \hspace{1cm} ext{and} \hspace{1cm} eta(x) = \sum_{i \in B} rac{x^i}{i!}$$

Theorem [extended version of this paper]

Proposition C.8. Let π be a random permutation and $j, k \in \mathbb{N}_+$. The probability that π^k has exactly j fixed points is:

$$e^{-\sum_{i|k} \frac{1}{i}} \cdot S(j)$$
 when $N \to \infty$ where $S(j) = [t^j] \exp\left(\sum_{i|k} \frac{t^i}{i}\right)$

41 Courtois, Bard, Wagner, FSE 2008

More Results [extended version of this paper]

Proposition C.10. Let π be a random permutation and $j, k \in \mathbb{N}_+$. The probability that π^k has exactly j fixed points and π has at least 1 fixed point is:

$$e^{-\sum_{i|k} \frac{1}{i}} \cdot S'(j)$$
 when $N \to \infty$
where $S'(j) = [t^j] \exp\left(\sum_{i|k} \frac{t^i}{i}\right) - [t^j] \exp\left(\sum_{\substack{i|k\\i\neq 0}} \frac{t^i}{i}\right)$
In practice:

j	0	1	2	3	4	5	6	7
S'(j)	0	1	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{7}{24}$	$\frac{7}{15}$	$\frac{151}{720}$
$e^{-\sum_{i k}\frac{1}{i}} \cdot \sum_{i=j}^{\infty} S'(i)$	0.632	0.632	0.479	0.402	0.300	0.255	0.184	0.151

42 Courtois, Bard, Wagner, FSE 2008

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK m

Initially started as an Slide-Algebraic Attack 3 in the old paper [eprint].

With time it turned out that the algebraic parts can be totally removed and replaced by faster direct methods...

Our Slide-Determine Attack

Berkeley

Â

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

Notation:

f_k() – 64 rounds of KeeLoq

g_k() - 16 rounds of KeeLoq, prefix of f_k().

We have: $E_k = g_k \circ f^8_k$. 528 = 16+8*64 rounds. Berkeley

FORDHAM UNIVERSITY

Stage 1:

- Assume fixed point for f⁸_k 4 on average!
- Determine 16 key bits [instant]
 - Confirm [NEW makes the attacks much faster!]
- Assume fixed for f_k
 - \Rightarrow <u>Stage 2.</u> Get a Table of C^{*}2³² keys. Easy because 48 'small'.
 - \Rightarrow Stage 3. Confirm which is right. C* 2³² KeeLoq computations.

Remark:

Berkelev

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

<u>ش</u>

We have completed the design and analysis of this attack AFTER the pre-proceedings went to print.

We have now very precise analysis with all probabilities and complexities exactly.

Berkelev

FORDHAM UNIVERSITY

 2^{32} KP, 1 fixed point for f_k.

<u>Version 1:</u> Fast RAM (1 CPU clock to read 64 bits, consecutive access, no random access needed).
 15 % of keys => 2²³ KeeLog encryptions (reading).

<u>Version 2:</u> Realistic RAM (16 CPU clock for 64 bits). 30 % of keys => 2^{27} KeeLoq encryptions (reading).

<u>Version 3:</u> Weighted average. 63 % of keys $=> 2^{29.6}$ KeeLoq encryptions on average. 2^{32} worst case.

FORDHAM UNIVERSITY

It is possible, at a manufacturing/personalization stage of KeeLoq, to make sure that f_k has no fixed points ! This excludes 63 % of keys. Effective key size goes down from 64 to 62.6 bits. Small loss !!! Prevents fast attacks.

This solution can be used in practice, and is very similar to a known solution that was in 2002 patented and commercialized by Gemplus (currently Gemalto) to prevent GSM SIM cards from being cloned, see http://www.gemalto.com/press/gemplus/2002/r_d/strong_k ey_05112002.htm

Results

Berkeley

Â

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK

- Direct algebraic attacks,
 - 160 rounds / 528.

Periodic structure =>

- Slide-Algebraic:
 - 2¹⁶ KP and about 2⁵³ KeeLoq encryptions.
- Slide-Determine:

 $-2^{23}-2^{30}$ KeeLoq encryptions.

What Happened?

Berkeley

FORDHAM UNIVERSITY THE JESUIT UNIVERSITY OF NEW YORK Ê

Power of Algebraic Attacks: Any cipher that is not too complex is broken... (!)

- Problem: We hit the "wall" when the number of rounds is large.
- Power of Sliding Attacks: their complexity does NOT depend on the number of rounds.

These two combined give a first in history successful algebraic attack on an industrial block cipher.