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Abstract. One of the hardest problems in computer science is the prob-
lem of gate-efficient implementation. Such optimizations are particularly
important in industrial hardware implementations of standard crypto-
graphic algorithms. In this paper we focus on optimizing some small
circuits such as S-boxes in cryptographic algorithms. We consider the no-
tion of Multiplicative Complexity, a new important notion of complexity
introduced in 2008 by Boyar and Peralta and applied to find interesting
optimizations for the S-box of the AES cipher [13, 16, 15]. We applied this
methodology to produce a compact implementation of several ciphers.
In this short paper we report our results on PRESENT and GOST, two
block ciphers known for their exceptionally low hardware cost. This kind
of representation seems to be very promising in implementations aiming
at preventing side channel attacks on cryptographic chips such as DPA.
More importantly, we postulate that this kind of minimality is also an
important and interesting tool in cryptanalysis.
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1 Introduction

The problems of circuit complexity is one of the hardest and yet very impor-
tant problems in computer science and complexity theory. Not everybody in the
industry cares about improving their gate count by a small factor, but such op-
timizations are particularly important in hardware implementation of standard
cryptographic algorithms, which in many security chips such as smart cards and
RFID, will be one of the most costly components. Many heuristic algorithms
for this problem have been invented, and with a lot of computing power one
can find very decent optimizations [9], but these optimizations are frequently
subject to further substantial improvement. In this paper we particularly focus
on optimizing the S-boxes for industrial block ciphers.

Much less known and very surprising is that this is also an important topic
in cryptanalysis. As shown in [4, 6, 5] such optimizations are also very important
in order to speed up so called algebraic attacks on symmetric ciphers, and in the
space of attacks which require very small quantities of data, these methods lead
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to currently best known attacks on a few ciphers (with more data, typically faster
attacks will exist). In this paper we focus mostly on 4x4 S-boxes in ciphers such
as PRESENT and GOST. These ciphers are known for their exceptionally low
hardware implementation cost [12]. But this is also what makes them vulnerable
to algebraic cryptanalysis.

2 S-box Optimization

In 2008 Boyar and Peralta introduced a new heuristic methodology to minimize
the complexity of digital circuits [13,16,15]. It is based on the notion of Multi-
plicative Complexity (MC) which is a new and very deep notion of complexity
invariant w.r.t. affine transformations. Their heuristic proposition is that a two
step-process based on MC appears to be able to produce very good gate efficient
implementation of several famous circuits such as the AES S-box [16, 15].

In this paper we apply this methodology to some cryptographically signif-
icant functions GF(2)* — GF(2)* (i.e. 4x4 S-boxes). We developed software
which allows us to compute optimal representations of these S-boxes w.r.t to
this methodology. Then we apply these representations to obtain an algebraic
representation of the whole cipher.

2.1 DMotivations For Achieving Low-MC and Low Gate Count
There are three mains reasons why we want to determine and improve the com-
plexity of various circuits.

1. Lower the implementation cost in silicon.

2. Prevent Side Channel attacks such as DPA. this is due to the fact the XORs
are believed easy to protect against DPA through linear secret charing tech-
niques. Then minimizing the number of AND gates is expected to lower
the cost of general-purpose protections against side channel attacks which
are developed to securely implement arbitrary digital circuits, such as for
example developed in [11].

3. Algebraic Cryptanalysis of a symmetric cipher can be greatly improved of
we use gate-efficient and compact representations, as demonstrated in [4-6].
This usually works only for cipher with a limited number of rounds. Then
additional non-trivial higher-level “tricks” are needed to be able to really
break a full cipher with many more rounds, see [5-7].

2.2 Gate Complexity and Multiplicative Complexity

Definition 2.2.1 (Gate Complexity (GC)).
Given a function GF(2)" — GF(2)™ we define its Gate Complexity (GC) as
the minimum number of 2-input gates of types XOR,OR,AND,OR needed.
This model is a model which the cost of all these gates is the same, which is
relevant for example in so called Bit-slice implementations of block ciphers, such
as for example in [1]. It is not yet the optimal model for silicon implementations,
where certain gates are more costly to implement. However such optimizations
are important and very hard to find for each model.
In 2008, Boyar and Peralta introduced the following fundamental and impor-
tant notion of complexity [13, 16]:
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Definition 2.2.2 (Multiplicative Complexity (MC)).

Given a function GF(2)" — GF(2)™ we define its Multiplicative Complexity
(MC) as the minimum number of AND gates which need to be used to implement
this function, with an unlimited number of NOR and XOR gates.

This model considers that linear operations come “for free” and ask to min-
imize just the number of AND gates. The problem with Gate Complexity (GC)
is that we are not in general able to determine its value, algorithms which find
such optimizations are typically random stochastic explorations of large trees
of solutions [9] and we are not sure if the optimizations are final or if they can
still be improved. However, as we will see in this paper, the Multiplicative Com-
plexity (MC) can be computed exactly by our methods which use SAT solver
software.

2.3 Multiplicative Complexity As A Tool For Gate Complexity

Boyar and Peralta have a developed a heuristic methodology, where they opti-
mise for of Multiplicative Complexity (MC) in order to produce also gate-efficient
implementations:

1. (Step 1) First compute the multiplicative complexity.

2. (Step 2) Then optimise the number of XORs separately, see [14, 8].

3. Optional Step 3: At the end do additional optimizations to decrease the
circuit depth, an possibly additional software optimizations, see [13,16],

This methodology was then used to produce new worldwide records in gate
efficient implementation of several famous circuits such as the AES S-box, and
many other circuits related to finite fields and algebra, [16, 15, 15].

In this paper we focus on optimisation of functions GF(2)* — GF(2)* which
are immensely popular in cryptography [?]. We have implemented fully and with
our own optimisation methods, both Steps 1. and 2. above.

The crucial feature of our implementation is that BOTH our Steps 1. and
2. are OPTIMAL, i.e. they produce the best possible optimizations which can
be obtained by following these two steps. Optimality was achieved due to SAT
solver software, we convert our problem to SAT and it either outputs SAT, and
a solution, which we convert to a concrete circuit optimization, or it outputs
UNSAT, and we are certain that there is no solution. There is third possibility,
that the SAT solver software runs for a very long time and we do not have enough
computing power to decide whether the result is SAT or UNSAT, but this have
never happened for 4x4 S-boxes. Accordingly, we were able to produce optimal
optimizations or this type for every 4x4 S-box we have ever tried. This is very
rare in complexity: to be able to completely determine what the best possible
result is.

We must say that these methods are at prototyping stage and they are so
far slower than other known methods [9]. Likewise, we do not claim that we can
optimise the linear parts as quickly as by recent methods described in [13,14],
but only that we can optimize to the strictest minimum possible, which probably
can also be achieved in [8], however it seems that we are the first also to apply
SAT solvers also to optimize non-linear circuits.
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Our solutions are optimal and thus proven to be impossible to improve (au-
tomated software proof with UNSAT). This is they would be provably optimal,
if we had a proof of correctness of the SAT solver software. Then they could be
transformed to produce fully verifiable mathematical proofs written in a formal
language, which prove these optimality results. Such proofs would not be pub-
lished in scientific papers, but rather as lengthy computer files, which should
come together with a formal system able to efficiently check the correctness of
such proofs. This is a major topic for further research which would require one
to develop a whole new formal language and software to manipulate it.

3 Optimizing the Present S-box

The Present S-box is defined as {12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2}. We
will number the least significant bits starting from 1.

Theorem 3.0.1. The Multiplicative Complexity of the PRESENT S-box is ex-
actly 4.

Proof: For 3 AND gates our thoroughly designed and tested system outputs
UNSAT. We have obtained an automated proof of this fact which takes a few
seconds on a PC and can reproduced and checked. For 4 AND gates, our system
outputs SAT and a solution. Further optimisation of the linear part, which is
also optimal allowed us to minimize the number of XORs to the strict minimum
possible (prove by additional UNSAT results). As a result, for example we ob-
tained an implementation of the PRESENT S-box with 25 gates, 4 AND, 20
XOR, 1 NOR which is optimal w.r.t our Boyar-Peralta 2-step methodology but
not optimal in overall gate complexity. 25 gates are still not very satisfactory.

A better result in terms of gate complexity can be achieved by the following
method: we observe that AND gates and OR gates are affine equivalents, and
it is likely that if we implement certain AND gate with OR gates, we might be
able to further reduce the overall complexity of the linear parts. We may try all
possible 2% cases where some AND gates are implemented with OR gates. By
this method, starting with the right optimization with MC=4, as several such
optimizations may exist, we can obtain the following new implementation of the
PRESENT S-box which requires only 14 gates total (!):

T1=X2"X1; T2=X1&T1; T3=X0"T2; Y3=X3"T3; T2=T1&T3; T1°=Y3; T2"=X1;
T4=X3|T2; Y2=T1°T4; T2°="X3; Y0=Y2"T2; T2|=T1; Y1=T3"T2;

Discussion. Our best optimisation of the PRESENT S-box does not con-
tradict the Boyar-Peralta heuristic to the effect that some of the best possible
gate-efficient implementations are very closely related to the notion of multiplica-
tive complexity. However the most recent implementations of the AES S-box, in
the second paper by Boyar and Peralta, show that further improvements, and
also circuit depth improvements, can be achieved also by relaxing the number of
ANDs used as in the latest optimization of the 4-bit inverse in GF(2*) for AES
given on Fig 1. in [16]. Moreover, now we are going to demonstrate that there
are many S-boxes which are worse than PRESENT in Multiplicative Complexity
(MC), yet require less gates to be implemented.
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4 The GOST S-boxes

We consider the main standard and most widely known version of the GOST
block cipher, also known as ”id-GostR3411-94-CryptoProParamSet” [10] and
also known as the one used by the Central Bank of the Russian Federation [12].
By running the same method and programs we obtained the following result:

Theorem 4.0.2. The Multiplicative Complexity of the eight GOST S-boxes
S1,52,53,54,55,56,57,S8 is exactly equal to respectively 4,5,5,5,5,5,4,5.

Related Work: We can compare this to the results in Table on page 226 of
[12] where we see that these 8 S-boxes are also on average more expensive than
the PRESENT S-box in the sense of Gate Equivalent (GE) cost, yet it is the
PRESENT S-box which is better against linear and differential cryptanalysis,
see Table 3 in [12]. However in our Multiplicative Complexity (MC) metric, in
our Gate Multiplicative Complexity (GC) metric, and also in the strict GE cost
metric in [12], it is clear that (on the contrary) the complexity of the PRESENT
S-box is always lower. Therefore we conjecture that PRESENT S-box will be
much weaker than the GOST S-boxes against many types of algebraic crypt-
analysis such as [6,7], and thus it is probably a bad idea to use the GOST
cipher with PRESENT S-boxes as proposed in [12].

5 Conclusion

In this paper we have applied the new Boyar-Peralta notion of Multiplicative
Complexity (MC) to derive efficient implementations of the S-boxes in two ci-
phers, PRESENT and GOST. We have developed software which does handle
the main two steps of this process, through a reduction to a SAT problem. Our
method is practical though rather slow, so far we have been able to optimize
every 4x4 S-box we tried, but not beyond. Yet it is unique and very power-
ful, because all the results are optimal and come with a mathematical proof
(automatically found by the software) that they cannot be improved.

In the case of PRESENT it happens that the Boyar-Peralta heuristics [13, 16]
works extremely well, and the best possible gate-efficient optimization we could
find also contains the (optimal) lowest possible number of non-linear gates(!).
However GOST S-boxes have on average higher Multiplicative Complexity (MC)
and yet lower implementation cost, so this heuristics is unlikely to be always the
best method to optimise a circuit. Clearly better optimizations are likely to use
a few more non-linear gates, as also seen for AES, cf. Fig 1 in [16].

Interestingly, we are able to provably minimize the number of non-linear
gates in a given cipher, to a rather low number of < 5 per S-box. Such optimiza-
tions are important in synthesis of implementations of circuits secure against
side-channel attacks [11] In future works we will show how S-box optimizations
greatly help to break the full-round block cipher GOST and its many variants
[10,12]. It is extremely rare to see a real-life block cipher which can be broken
faster than brute force. This however requires a lot of additional work, see [6, 7].
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