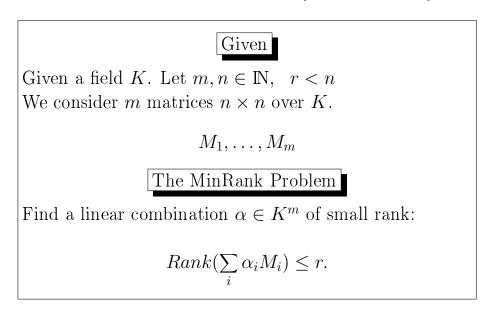
The MinRank problem

by Nicolas T. Courtois Bull CP8 / Paris 6 University /Toulon University

www.minrank.org

courtois@minrank.org

A problem that arose at Crypto'99 [Shamir, Kipnis]:



MinRank is NP-complete

[Shallit, Frandsen, Buss 1996] http://www.brics.dk/RS/96/33/ An effective method to encode any system of multivariate equations !

MinRank is very difficult in practice.

Degenerated MinRank

Special Case: all matrices are diagonal:
The Minimal Weight Problem of Error Correcting Codes.
Equivalent to Syndrome Decoding.
Studied a lot for 20 years now...
[Berlekamp,McEliece,Gabidulin,Stern, Chabaud,Canteaut,Véron,...]
All known algorithms for this problem are exponential.

Algorithms for full MinRank

We proposed 4 algorithms. See:

- Nicolas Courtois, Louis Goubin:
 "The Cryptanalysis of TTM", Asiacrypt 2000.
- My PhD thesis April-Mai 2001, Paris 6 University

Hard instances AD 2000

Let p=65521, the biggest prime $< 2^{16}$ Given 10 matrices 6×6 , over \mathbb{Z}_p . Rank r = 3. Best known attack is in 2^{106} .

A new Zero-knowledge scheme MinRank

The public key: $M_1, \ldots, M_m.$ The secret key: $\alpha \in GF(p)^n$, such that $M = \sum \alpha_i \cdot M_i$ Rank(M) = r < n.

The main idea:

Consider two random non-singular matrices S and T. Consider the probability distribution of

TMS

Just a random matrix of rank r !

The Prover setup

A uniformly chosen random combination β_1 of M_i :

 $N_1 = \sum \beta_{1i} \cdot M_i$

Let $\beta_2 = \alpha + \beta_1$. Remark: β_2 is just random.

$$N_2 = \sum \beta_{2i} \cdot M_i$$

$$N_2 - N_1 = M$$

\mathbf{P} rover	Verifier
$\beta_1, \beta_2, S, T, X$	
$H(X), H(TN_1S + X),$	$H(TN_2S + X), \ H(S,T)$
	?
$\overleftarrow{q \in \{0, 1, 2\}}$	

Case $\mathbf{q} = \mathbf{0}$:

 $(TN_1S + X), (TN_2S + X)$

Checks commitments and the rank of

 $(TN_2S + X) - (TN_1S + X) = TN_2S - TN_1S = TMS.$

Case $\mathbf{q} = \mathbf{1}, \mathbf{2}$:

 X, S, T, β_q

That relate the committed values to the M_i .

- It is Black-box Zero-knowledge.
- Cheating probability $\frac{2}{3}$ in 3 moves.