The MinRank problem

by Nicolas T. Courtois

Bull CP8 / Paris 6 University /Toulon University www.minrank.org
courtois@minrank.org

A problem that arose at Crypto'99 [Shamir, Kipnis]:

Given

Given a field K. Let $m, n \in \mathbb{N}, r<n$
We consider m matrices $n \times n$ over K.

$$
\begin{gathered}
M_{1}, \ldots, M_{m} \\
\text { The MinRank Problem }
\end{gathered}
$$

Find a linear combination $\alpha \in K^{m}$ of small rank:

$$
\operatorname{Rank}\left(\sum_{i} \alpha_{i} M_{i}\right) \leq r .
$$

MinRank is NP-complete

[Shallit, Frandsen, Buss 1996]
http://www.brics.dk/RS/96/33/
An effective method to encode any system of multivariate equations !

MinRank is very difficult in practice.

Degenerated MinRank

Special Case: all matrices are diagonal:
The Minimal Weight Problem of Error Correcting Codes.
Equivalent to Syndrome Decoding.
Studied a lot for 20 years now...
[Berlekamp,McEliece,Gabidulin,Stern, Chabaud,Canteaut,Véron,...]
All known algorithms for this problem are exponential.

Algorithms for full MinRank

We proposed 4 algorithms. See:

- Nicolas Courtois, Louis Goubin:
"The Cryptanalysis of TTM", Asiacrypt 2000.
- My PhD thesis April-Mai 2001, Paris 6 University

Hard instances AD 2000

Let $\mathrm{p}=65521$, the biggest prime $<2^{16}$
Given 10 matrices 6×6, over \mathbb{Z}_{p}. Rank $r=3$.
Best known attack is in 2^{106}.

A new Zero-knowledge scheme MinRank

The public key:
M_{1}, \ldots, M_{m}.
The secret key:
$\alpha \in G F(p)^{n}$, such that

$$
\begin{gathered}
M=\sum \alpha_{i} \cdot M_{i} \\
\operatorname{Rank}(M)=r<n .
\end{gathered}
$$

The main idea:

Consider two random non-singular matrices S and T.
Consider the probability distribution of

$$
T M S
$$

Just a random matrix of rank r !

The Prover setup

A uniformly chosen random combination β_{1} of M_{i} :

$$
N_{1}=\sum \beta_{1 i} \cdot M_{i}
$$

Let $\beta_{2}=\alpha+\beta_{1}$. Remark: β_{2} is just random.

$$
\begin{aligned}
& N_{2}=\sum \beta_{2 i} \cdot M_{i} \\
& N_{2}-N_{1}=M
\end{aligned}
$$

One round of identification

Prover	Verifier
$\beta_{1}, \beta_{2}, S, T, X$	
$H(X), H\left(T N_{1} S+X\right), H\left(T N_{2} S+X\right)$,	$H(S, T)$
	$?$

Case $\mathbf{q}=\mathbf{0}$: $\quad \xrightarrow[\left(T N_{1} S+X\right),\left(T N_{2} S+X\right)]{ }$

Checks commitments and the rank of
$\left(T N_{2} S+X\right)-\left(T N_{1} S+X\right)=T N_{2} S-T N_{1} S=T M S$.

Case $\mathbf{q}=1,2$:

$$
X, S, T, \beta_{q}
$$

That relate the committed values to the M_{i}.

- It is Black-box Zero-knowledge.
- Cheating probability $\frac{2}{3}$ in 3 moves.

