1

	Secure digital signatures with McEliece and new records in short signatures
Slide 1	Nicolas T. Courtois ^{1,2} , Matthieu Finiasz ¹ and Nicolas Sendrier ¹ ¹ INRIA Rocquencourt, France ² CP8 Crypto Lab, SchlumbergerSema, France
	Full paper and info : www.minrank.org/mceliece/

Slide 4

Courtois-Finiasz-Sendrier signature scheme [CFS] Let $n = 2^m$, $m \ge O(t)$, t grows slowly. Signature cost signature length¹ verification cost¹ public key size best decoding attack best structural attack ¹One error position omitted

Slide 5

Proofs are very easy in the random oracle model. \diamond Ressources of the Adversary : Bounded by an exponentially growing expression $n^{t(1/2+o(1))}$. \Rightarrow concrete security by substitution (!). \diamond Adversarial Goal : Compute a valid pair (message, signature). \diamond Adversarial model : Access to a signature oracle. (Apparently) the strongest security notion known. Main theorem 0.0.0.1 (Provable Security of CFS) Any T-time algorithm A that forges a signature satisfies : $T > Min(T_{Goppa}, T_{SD})$.

Slide 6

4

