

GSM and 3G Security Summary and Vocabulary Help,

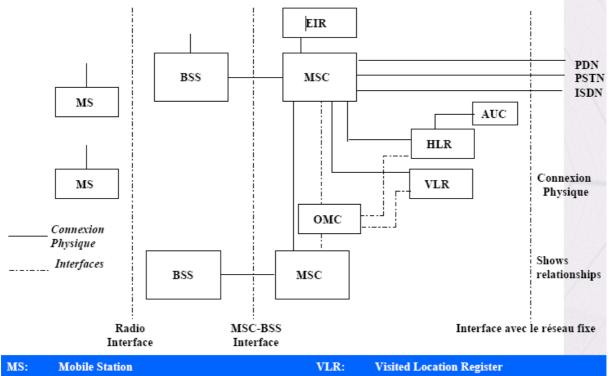
© Nicolas T. Courtois, 2006-2010 University College London

Telco	A national telephone company, in Europe used to be a part of a
	government agency PTT = the Postal Telegraph and Telephone
PSTN	Public Switched Telephone Network - analogue phone network
ISDN	Integrated Services Digital Network - digital phone standard, 64 kbit/s
PSPDN	Packet Switched Public Data Network – modern communication networks

0 G = Early analogue mobile phones

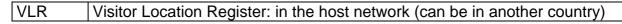
0 G MTS: 1946-70s (half-duplex), IMTS: 1969-80s (full duplex, 2000\$, 25 W),

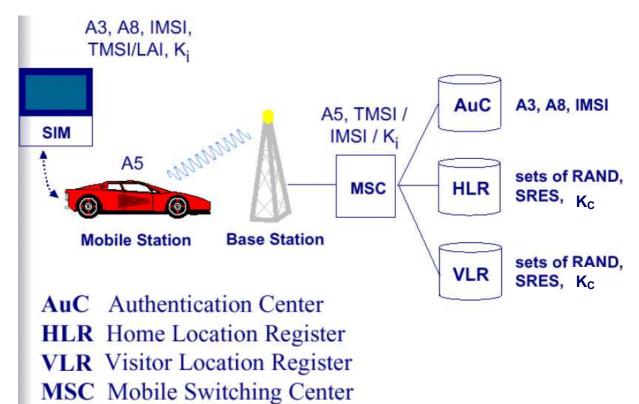
1 G = Analogue mobile phones, no security


US 1 G	1990s, outdated, see slides by David Wagner from SAC 2002. US
	systems: There was no encryption, easy to eavesdrop, criminals played
	replay attacks and made free calls (2 % of all calls), US losses \$650
	million/year due to pirate calls
NMT	1981-2007, 450 MHz, Northern+Eastern Europe, better range than GSM
	(30 km), late models had analogue scrambling (two-band audio frequency
	inversion, prevents casual listeners).
	DMS Data and Messaging Service or NMT-Text, was used in Russia,
	Poland and Bulgaria, before SMS service started in GSM!
FDMA	Frequency DMA, multiple carrier bands at 450 and 850 MHz, 2.4 kbits/s

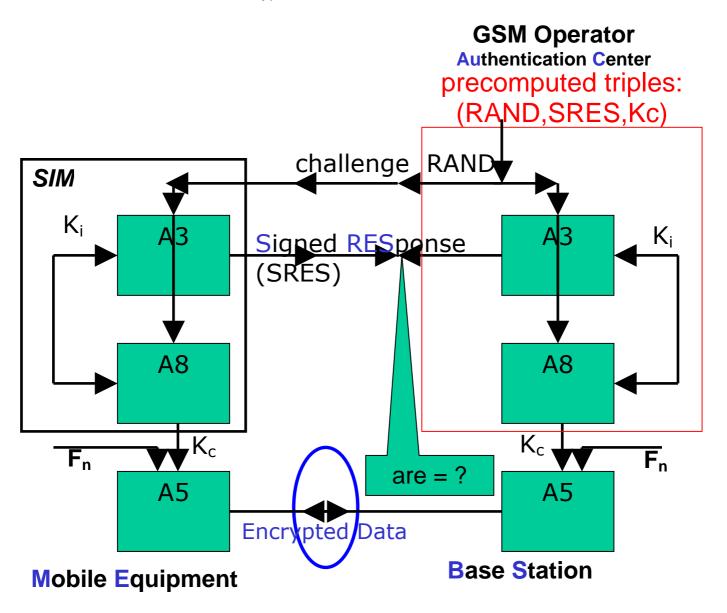
2 G = Digital mobile phones

Early US	All security was broken (XOR mask + CMEA , ORYX, CAVE), Cf. Wagner					
GSM	Groupe Special Mobile [French, 1982] later pretended to be Global					
[EU,	System for Mobile Communications [by ETSI, 1989, in English],					
Asia,Aus]	2W max, 13K bits/sec for speech 9.6 K for data (speech+ECC=22.8 k) on					
_	one TDMA channel out of theoretical capacity 270 kbits/s (time-shared).					
TDMA	Time Division Multiple Access – air interface of GSM. 1 burst=0.577 ms.					
CDMA	Code-based Division Multiple Access, based on orthogonal sequences.					
[US]	Also set of 2G standards renamed cmdaONE, competitor of GSM, no					
	smart cards, royalties=>Qualcomm<=chips. Better density !					

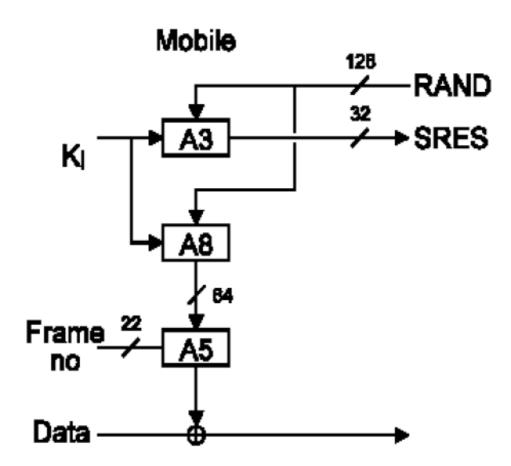

2.5 G and 2.75 G technologies


GPRS	General Packet Radio Service. Up to 8 time slots, with 9-21.4 Kbits/sec				
	each (variable error correcting rate CS1-CS4), 3-5 slots used (Class2-				
	12) up to 48 Kbit/sec with Class 12 (serve more people - save money)				
EDGE	Enhanced Data rates for GSM Evolution, 8 faster slots used,				
	up to 8x48 = 384 kbit/s, EDGE Evolution: 1 Mbit/s, lower latency				

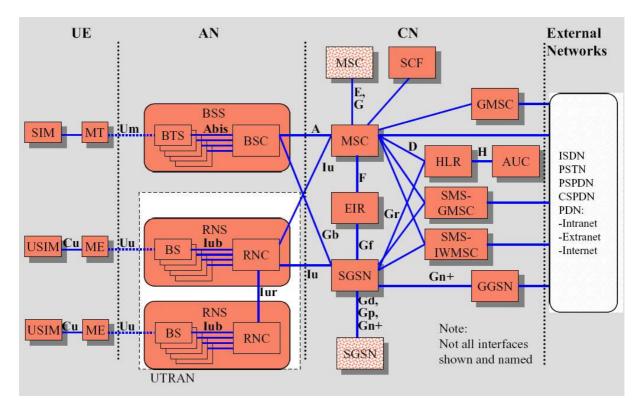
M	S: Mobile Station		VLR:	Visited Location Register
BS	S: Base Station Syste	m	OMC:	Operation and Maintenance Centre
M	SC: Mobile Services S	witching Centre	EIR:	Equipment Identity Register
H	LR: Home Location R	egister	AUC:	Authentication Centre


MS	Mobile Subscriber = ME+SIM					
ME	Mobile Equipment					
SIM	Subscriber Identity Module					
IMEI	International Mobile Equipment Identity – unique for each ME					
IMSI	International Mobile Subscriber Identity – unique for each SIM, 15 digits.					
	Used in exceptional circumstances, when the BTS asks for it, then the MS					
	receives encrypted TIMSI to be used later					
TIMSI	Temporary pseudonym that is really used, even when roaming to another					
	network, 5 digits, changed on a regular basis [another encrypted TIMSI]					
LAI	Local Area Information – uniquely identifies one base station					
EIR	Equipment Identity Register = List of IMEIs in one network					
BTS	Base Transceiver Station					
handover	Moving from one BTS to another (e.g. when walking)					
BSC	Base Station Controller – manages handover,					
	connected to multiple BTS and MSC					
BSS	Base Station System=1 BSC + several BTS					
roaming	Moving to another network operator (same or another country)					
MSC	Mobile Switching Centre: manages the communications between different					
	mobiles and PSTN					
SGSN	Serving GPRS Support Node - delivers packets to MSs within its service					
	area through multiple BTSs					
OMC	Operation and Maintenance Centre (manages MSCs and the whole					
	network).					
AuC	Authentication Centre					
HLR	Home Location Register. Part of AuC.					
	-Knows where to connect incoming call (which network, which cell).					
	Home Location Register. Part of AuC.					

AuC	-Generates in advance triples (RAND, SRES, Kc)					
HLR	Knows where to connect an incoming call					
	-Stores many triples (RAND, SRES, Kc)					
VLR	In the host network (can be in another country).					
	-Receives and stores the triples for each TIMSI.					
Ki	Diversified unique MS key on 128 bits, known only to SIM and AuC.					
	Generated from master key + IMSI + optional data. By the operator.					
A3,A8	Proprietary authentication (MAC = keyed hash) algorithms implemented in the SIM, operator dependent. Share common 128-bit input, common key Ki on 128 bits. Can be the same algorithm with two different outputs. Example: COMP128 – very insecure provided as a weak example Input: RAND on 128 bits Output A3: 32 bit MAC called SRES (Signed RESponse)					
	Output A8: Kc on 64 bits, 54 really used in A5/1 (the strongest before					
	A5/3=Kasumi=only in 3G phones, not yet used in GSM).					
A5/0-3	Public voice encryption algorithms, implemented in the phone, the station chooses which to use. Initialised with Kc and IV = frame number on 22 bits.					
	Produces only 114 bits of keystream for this IV. These bits are XORed to					
	the encoded (voice+) frame. (228 bits are sent in both directions).					
A5/2	Excessively weak though designed using 15.75 man x months and all members of SAGE stated that they were satisfied that [A5/2] was suitable to protect against eavesdropping on the GSM radio path" - ETSI TR 278					
A5/1	Almost secure enough but not used correctly at all: Biham Crypto 2003					


GSM Authentication and Encryption

- A3: Challenge-reply authentication 128->32 bits.
- A8: Session key Kc derivation 64 bits used for 1 phone call.
- A5/X: stream encryption of short frames of 114 bits.


No authentication of the network -> phone. Fixed in UMTS.

SIM Card side and data/key sizes

- BS transmits to ME a 128-bit challenge RAND
- ME returns SRES on 32 bits
- K_i size: 56-128 bits, proprietary
- RAND and K_i are combined with A8 to get a 64-bit key K_c.
- this key K_c + frame number on 22 bits are used to encrypt blocks of 114 bits.
- Redundant data frames are encrypted + stream cipher => ciphertext-only attacks. GSM is BROKEN!



3G vocabulary

UMTS	Universal Mobile Telecommunications System, or 3GPP, main 3G mobile						
	phone system. [Competitor: CDMA 2000]. Permanent 2Mbit/sec (pico cell,						
	antenna on the building in front of you) and otherwise 144 Kbits/sec.						
W-CDMA	Wideband Code Division Multiple Access, the air interface of UMTS,						
	royalties=>Qualcomm						
HSDPA,	Extension of UMTS canal DCH for mobile broadband,						
3 G+	now 3.6 Mbit/s and even 7.2 Mbit/s (Release 6) at some locations.						
SGSN	GPRS Support Node						
GGSN	Gateway GPRS Support Node						
SMS-	Gateway MSC For Short Message Service, A function of an MSC capable						
GMSC	of receiving a short message from an SC, interrogating an HLR for routing						
	information and SMS info, and delivering the short message to the VMSC						
	or the SGSN of the recipient MS.						

3G security

A5/3 =	Voice encryption algorithm + integrity algorithm, 128-bit keys, also added					
Kasumi	to the GSM standard (which explains the name)					
	CK=cipher key on 128 bits <= freshness, limited usage					
	IK =integrity key on 128 bits					
AKA	Authentication and Key Agreement (the whole 3G security protocol)					
MAC	f1_K(SQN RAND AMF) - on 64 bits					
SQN	Sequence number of 48 bits					
AMF	Authentication Management Field on 16 bits					
AK	Anonymity key on 128 bits					
AUTN	128 bits: network authentication token = SQN xor AK AMF MAC					
Quintet	(RAND, XRES, CK, IK, AUTN)					
USIM	Operator specific algorithm for f1,f2,f3,f4,f5					
algos	One example is MILENAGE, based on AES, but usually proprietary					

Crypto comparison GSM vs. 3G

GSM			UMTS		
Description	Bits	Alg	Description	Bits	Alg
Ki Subscriber authentication key	128		K Subscriber authentication key	128	
RAND random challenge	128		RAND random challenge	128	
XRES exepected result	32	A3	XRES expected result	32-128	f2
Kc cipher key	64 max	A8	Ck cipher key	128	f3
			IK integrity key	128	f4
			AK anonimity key	48	f5
			SQN sequence number	48	
			AMF authentication management field	16	
			MAC message auth. Code	64	f1
Example : algorithm COMP128-1			Example : algorithm Milenage		