

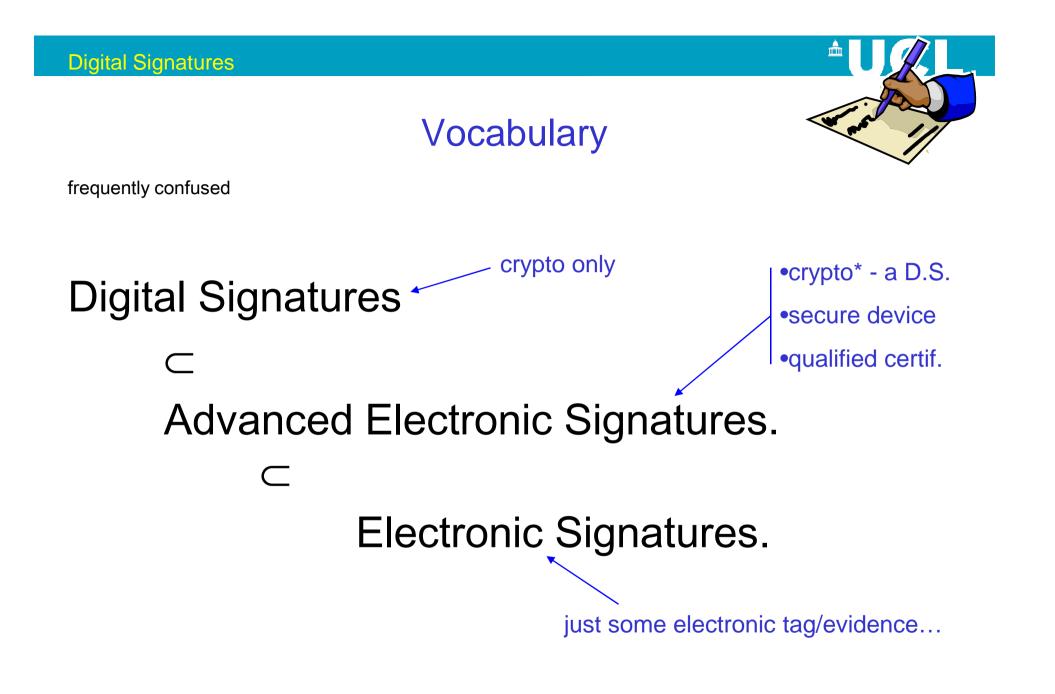
Digital Signatures

Nicolas T. Courtois - University College London

Roadmap

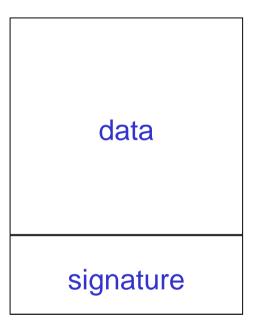
- Legal aspects
- What are Digital Signatures ?
- How Secure they are ?
- Main realizations known
- Applications

2


What is a [Digital] Signature ?

1

Legal Aspects



Electronic Signatures

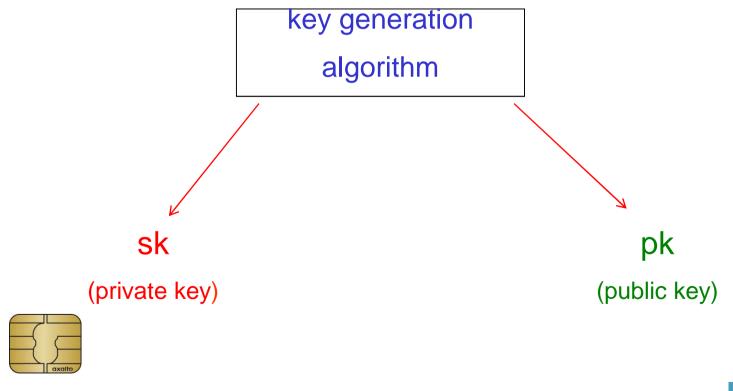
5

Electronic Signatures

- Idea: some electronic data associated to an electronic document that proves (?) sth. (not much)...
- <u>Goal:</u> Electronic records and signatures should be admissible in court. Can even be just a PIN code (!). How strong are solutions and in what context secure enough different problem. Usually admitted, have to challenge them in court.

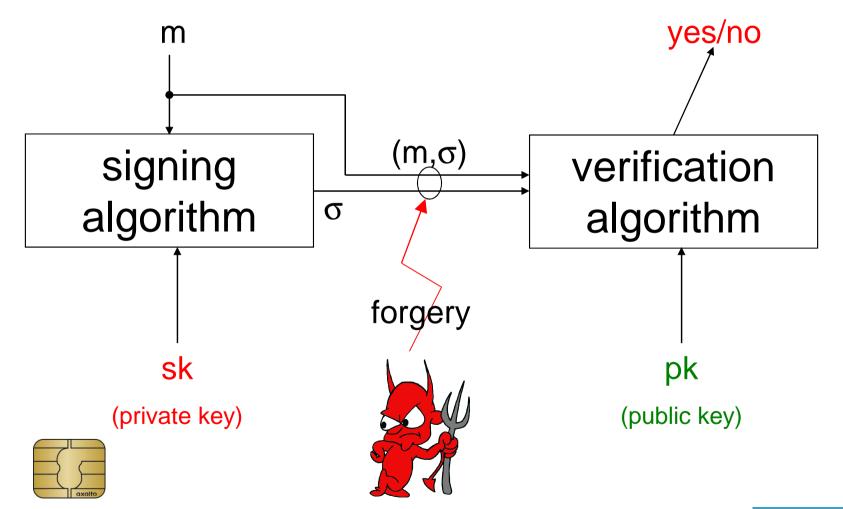
Electronic Signature: Def:

<u>Definition [US]</u>: an <u>electronic sound, symbol, or process</u>, <u>attached</u> to or logically associated with a record and executed or adopted by a person with the <u>intent</u> to sign the record. [Uniform Electronic Transactions Act, US].


Definition [EU]: data in electronic form which are attached to, or logically associated with, other electronic data and which serve as a method of authentication. => (apparently no "intent")

6

Idea: cryptographic solution Definition: 3 algorithms...



Digital Signature

Digital Signature

Digital Signature.

Idea: cryptographic technique.

Definition: 3 algorithms...

Security Goals/Properties: Message Authenticity, Unforgeability, Non-repudiation,

Third-party Verifiability...

The European Directive on Electronic Signatures

The European Directive of December 13, 1999 Main goals:

- free movement of signatures between the EU countries to accompany free movement of goods and services.
- Recognition as evidence in court.

Effect: Member states are required to implement the Directive => translate into national law.

Major change in 2012/2013: to be repealed and replaced....

Electronic and Advanced Signatures (in The European Directive)

1. Electronic Signature.

Definition [EU]: data in electronic form which are attached to, or logically associated with, other electronic data and which serve as a method of authentication. => (apparently no "intent" like in the US)

2. Advanced Electronic Signature.

2x link.

=def= an electronic signature such that:

- is uniquely linked to a signatory and capable of identifying the signatory, and created by means the signatory can maintain under his sole control,
- and linked to the data being signed such that any change of the data is detectable.

Electronic == Handwritten ?

Equivalence (as strong in terms of law) under two conditions:

- 1. Produced by a <u>secure</u> signing device. [hardware device !]
- 2. Based on a <u>qualified</u> certificate.

"Advanced Signature" a.k.a. "Qualified Signature"

Is it normal, good or bad?

Handwritten signatures can be "perfectly" imitated as well. In some aspects electronic signatures are much more secure...

axalto

Qualified certificate Alice 3 Data SSCD SDO 13

Digital Signatures

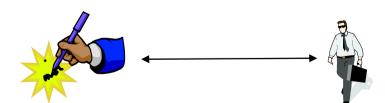
The European Directive on Electronic Signatures

- CSPs = Certification Service Providers more than just CA (Certification Authorities).
- They have the right to issue QC (Qualified Certificates) on some territory.
 - QC can contain arbitrary limitations provided standardized/recognized [e.g. <= 1000 €].
- CSPs are LIABLE for damage (for negligence e.g. to revoke) potentially huge liability !.
 - \Rightarrow have to implement tough [physical,IT,...] security.
 - ⇒ Explains why one has to pay for signatures... (e.g. 50 \pounds per year for a string of bits...).

(<u>Technical solution</u>: (not done) rely on several CAs, check all the certificates. Impossible to corrupt everyone...)

Electronic Signatures in the UK

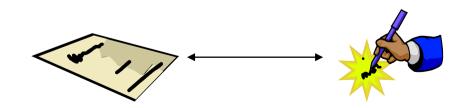
EU Directive => Translation into national law.


- 1. The Electronic Communications Act 2000.
 - Section 7(1). Electronic signatures are admissible in evidence about the authenticity or integrity of a communication or data.
- The Electronic Signatures Regulations 2002 (SI 2002 No. 318).
 - Regulation 3: QC and CSPs.

Signatures

Two main functions

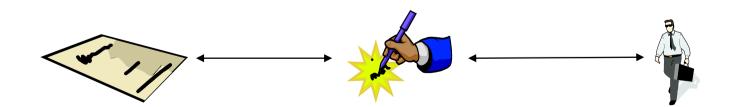
1. Identify the signer



Signatures

Two main functions

- 1. Identify the signer
- 2. Approbation



2x Link

- EU Directive 1999,
- National Laws...

[Manual and Digital] Signatures

Two main functions:

- 1. Identify the signer
- 2. Approbation of the document.

Manual ≠ Digital Signatures

Two main functions

- 1. Identify the signer
- 2. Approbation

...in electronic word:

- 1. Copy signature?
- 2. Alter the document ?

Consequence => A digital signature does <u>depend on the document</u>.

*needed to protect document integrity, did not exist before !

Digital Signatures

Three main functions?

- 1. Identify the signer
- 2. Approbation
- 3. Integrity of the message

Requirements so far:

Three main functions:

- 1. Identify the signer (solved)
- 2. Approbation (*not easy*...)
- 3. Integrity of the message (solved)

Digital Signatures - Bonus

Another main function !

 Automatic verification, and better:
 Public Verifiability (easy => became mandatory)

2.

Towards Technical Solutions

How These Problems are Solved ?

- Identify the signer doable
 => solved by crypto + trusted key
 infrastructure /PKI/ + secure hardware)
- Approbation hard
 > by crypto + law + policy + trusted
 hardware/software
- Integrity of the message
 => solved by crypto only
- 4. Public Verifiability
 => solved by crypto only

25

How These Problems are Solved ?

1. Identify the signer

Non-repudiation == Imputability: (French: Non-répudiation, Imputabilité). The signer is the ONLY and UNIQUE person that can create the signed_document.

Non-Repudiation (== "Imputability")

The signer is the ONLY UNIQUE person that can create the document.

- \Rightarrow Existed already for manual signatures.
- ⇒ CAN ONLY BE DONE with PUBLIC KEY CRYPTOGRAPHY !
 - \Rightarrow Impossible with DES or AES.
- \Rightarrow Secure hardware is ALSO NECESSARY
 - \Rightarrow Impossible without a smart card (or other kind of trusted and closed hardware).
- \Rightarrow Source of trust necessary
 - \Rightarrow One authentic public key: ROM, CD-ROM sth. that cannot be altered.

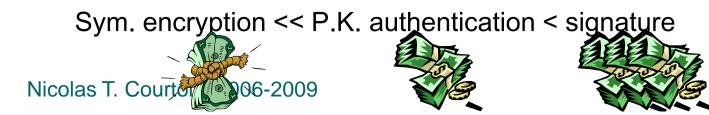
3.

Cryptographic Signatures

Digital Signatures

***Message Authenticity – Goals

Different security levels:


- 1. Correct transmission no (random) transmission error. A malicious attacker can always modify it.
 - Achieved with CRC and/or error [correction]/detection codes.
- 2. Integrity no modification possible if the "tag/digest" is authentic. If we cannot guarantee the authenticity of the tag, a malicious attacker can still modify and re-compute the hash.
 - Achieved with cryptographic hash functions (= MDC). (e.g. SHA-1).
- 3. Authenticity specific source. Authentified with some secret information (key).
 - Achieved with a MAC (= a hash function with a key = a secret-key signature).
- 4a. Non-repudiation very strong requirement. Only one person/entity/device can produce this document.
 - Achieved with Digital Signatures. The strongest method of message authentication.
- 4b. Public verify-ability. Everybody can be convinced of the authenticity (trust the bank ?).
 - Achieved with Digital Signatures. The strongest method of message authentication.

Digital Signatures vs. Authentication

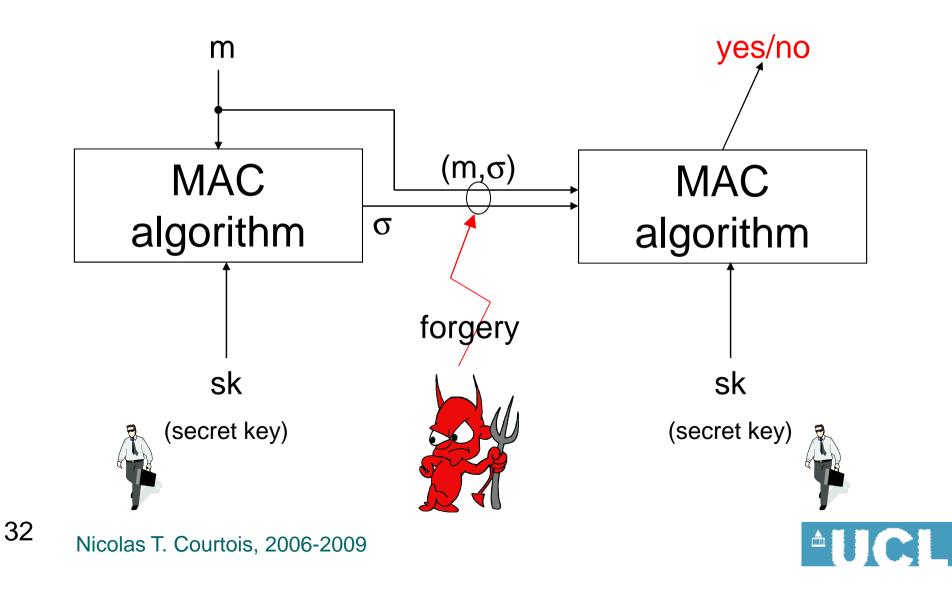
- Strongest known form of Message Authentication.
- Allows also authentication of a token/device/person (e.g. EMV DDA, US Passport):
 - challenge response (just sign the challenge)
- The reverse does not hold:
 - Not always possible to transform authentication into signature. More costly in general !

**Signatures

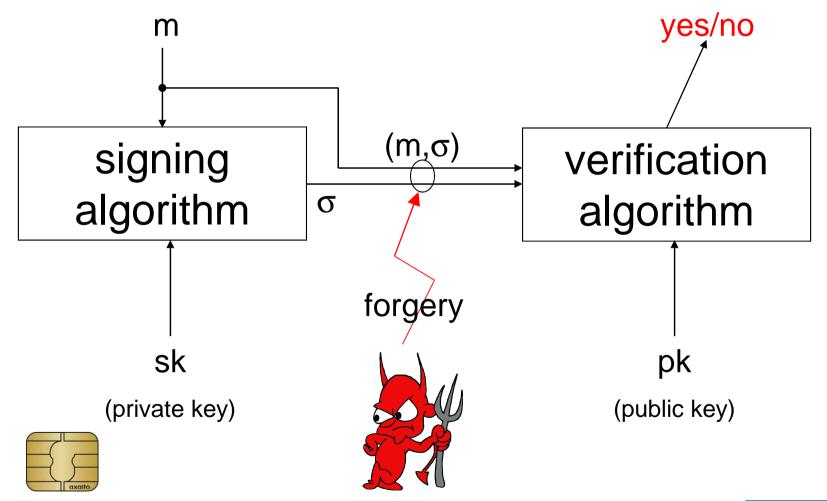
Can be:

Public key:

•Real full-fledged digital signatures.

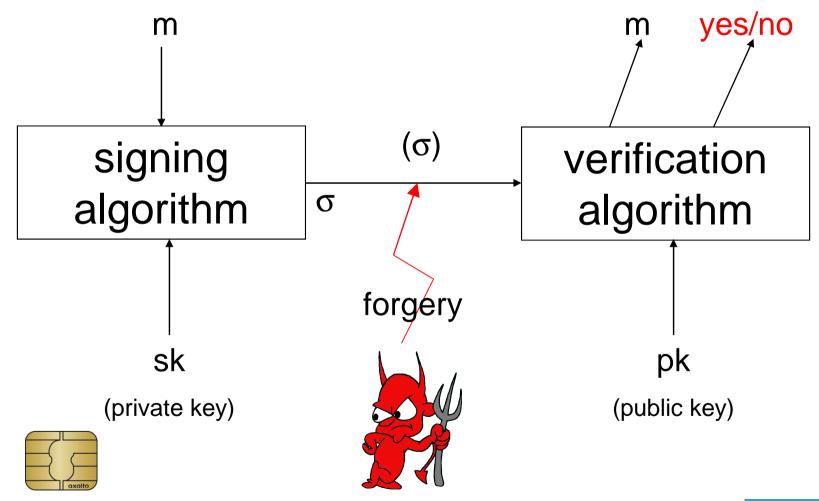

Secret key:

- •Not « real signatures » but MACs.
- •Widely used in practice, OK if you trust the verifier...



MACs = "Secret-Key Signatures"

Digital Signatures



Nicolas T. Courtois, 2006-2009

33

Digital Signatures with Message Recovery

UCL

Nicolas T. Courtois, 2006-2009

34

****Signatures - Requirements

- Authenticity guarantees the document signed by...
- 2. Non-repudiation normally only possible with public-key signatures.
- 3. Public verify-ability normally only possible with public-key signatures.

4. How to Do It Right?

Until around 2001, nobody knew exactly! Some international standards were broken.

Modern Cryptography:

1. First: Understand what we want: Formal security definitions.

Then: Try to achieve it:
 Prove the Security w.r.t. a hard problem.

There is no other way known.

Many security notions, but...

- Take the STRONGEST POSSIBLE version:
- 1. Adversarial Goal.

the weakest possible !

2. Resources of the Adversary:

The strongest possible: 10 G\$.

3. Access / Attack: The strongest possible, total adaptive "oracle" access.

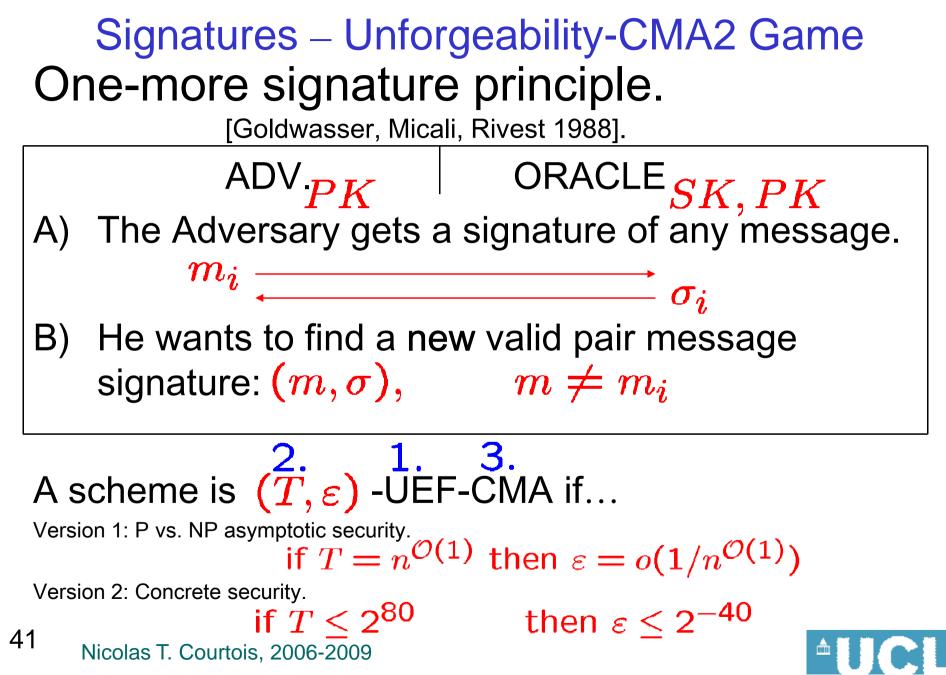
Secure Public Key Signature

The "good" definition [Goldwasser-Micali-Rivest 1988]: EUF - CMA (Existential Unforgeability under CMA)

1. Adversarial Goal.

Find any new pair (m,σ) (new m)!

- Resources of the Adversary: Any Probabilistic Turing Machine doing 2⁸⁰ computations.
- Access / Attack: May sign any message except one (target). (Adaptively Chosen Message Attacks).



*Attacks on Signature Schemes

- 1. Adversarial Goal.
- BK Recover the private key,
 - e.g. factor N=pq .
- UF Universal forgery sign any message, may be easier ! e.g. compute: $x \mapsto x^{1/e} \mod N$
- SF Selective Forgery sign some messages
- EF Existential Forgery just sign any message, even if it means nothing useful.

4.1. First Try

Access (3.) - Basic Attacks on Signatures

Again assume that the public key is indeed known...

- No key at all.
- Public Key Only === a.k.a. Key Only Attack.
- Known Message Attack. Access to several pairs (m,σ).
- Directed [==Non-Adaptive] Chosen Message Attack. (DCMA).
 - Single Occurrence Chosen Message Attack. (SOCMA).
- Fully Adaptive Chosen Message Attack. (CMA).

Textbook RSA Signature

- Signature: $\sigma = m^d$.
- Verification: $m ?= \sigma^e$.

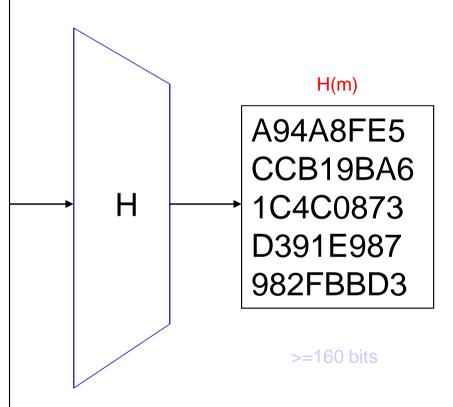
Never use it.

What do We Sign ? The Problem: Public key crypto is <u>very slow</u>.

Sign a long message with RSA, impossible, even on a 4 GHz CPU !

 \Rightarrow Use hash function.

 \Rightarrow Sign a short « digest » of the message.

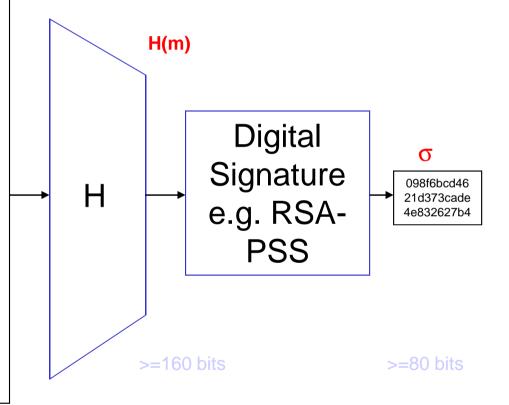


[Cryptographic] Hash Function:

m

A hash function (or hash algorithm) is a reproducible method of turning data (usually a message or a file) into a number suitable to be handled by a computer. These functions provide a way of creating a small digital "fingerprint" from any kind of data. The function chops and mixes (i.e., substitutes or transposes) the data to create the fingerprint, often called a hash value. The hash value is commonly represented as a short string of random-looking letters and numbers (Binary data written in hexadecimal notation).

0-∞ bits


46

Hash-then-Sign

m

A hash function (or hash algorithm) is a reproducible method of turning data (usually a message or a file) into a number suitable to be handled by a computer. These functions provide a way of creating a small digital "fingerprint" from any kind of data. The function chops and mixes (i.e., substitutes or transposes) the data to create the fingerprint, often called a hash value. The hash value is commonly represented as a short string of random-looking letters and numbers (Binary data written in hexadecimal notation).

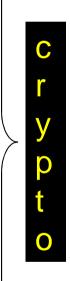
UCL

0-∞ bits

Full Domain Hash RSA Signature

- Signature: $\sigma = H(m)^d$.
- Verification: $H(m) ?= \sigma^{e}$.
- Please use it.
- Provably secure ("tight" security). Slight problem:
 - There is no standardised hash function that produces a hash on 1024 or 2048 bits.
 - So RSA-FDH is not very widely used.

5. Best Known Techniques



How Secure Are Secure Signatures ?

All these are necessary ingredients:

- Secure signing environment (know what you sign).
- Secure hash function.
- Secure PK cryptographic system (e.g. RSA) - key size !
- Secure padding! Many were broken
 => provable security.
- All this protected against side-channel attacks.
- A complete certification chain: all data have to be certified (e.g. the elliptic curve a, b, p,G, etc...).
- Source of trust: have one trusted key (e.g. in ROM).

How do you Achieve Security

First: Understand what we want. Then: Try to achieve it.

How?

Cryptography: We just try. Cryptology: Prove it mathematically.

Provable Security:

Reduce the security to a hard problem.

Nicolas T. Courtois, 2006-2009

52

Possible ?:

Became possible PRECISELY BECAUSE we understood what is a secure digital signature. [GMR88 definition]

Textbook RSA Signature

- Signature: $\sigma = m^d$.
- Verification: $m ?= \sigma^e$.

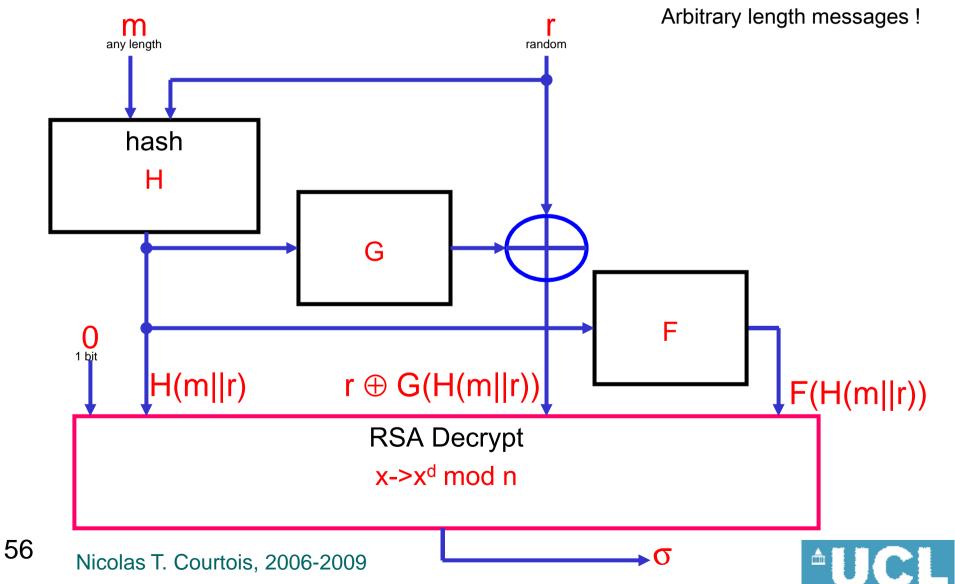
Never use it.

Provable Security – Recommended Solutions

Signature (easier):

- RSA-PKCS #1 v1.5. insecure (no proof yet, not broken, variants broken)
 (exists also in PKCS #1 v2.0 and 2.1 cf. www.rsasecurity.com)
- RSA-FDH: perfectly OK. Except how to find hash function on 2048 bits ?
- RSA-PSS: current recommended standard, part of PKCS #1 V.2.x.
 - The best method to sign with RSA >=1024 bits

Hash functions broken =>:


- <u>Very serious</u> for signing exe, doc ,pdf, ps, and other complex formats.
- Not serious AT ALL for signing messages in simple text.
- <u>BTW.</u> It is possible to see that CR is not necessary for digital signatures [UOWHF, Boneh result]. Nobody uses this unhappily...

Probabilistic Signature Scheme [Bellare-Rogaway'96]

Uses a hash function H and two one-way functions F and G.

LUCI

Provable Security - Example:

Any attack on RSA-PSS => Extract e-th roots mod N.

Secure Signatures – Time Scale

Time to break

Authentication: 1 hour. After it is too late !

Signature: 20 years and more...

Must think about future attacks !

E.g. EMV cards: almost certainly broken due to the key sizes, 1024 bits @ year 2010.

Further Security

Use timestamping, or forward-secure D.S. or destroy the private key.

**But is it hard?

Any attack on RSA-PSS => Extract e-th roots mod N.

Does not imply factoring ! (nobody knows if there is a difference..)

Guarantees Solution...

- If one can factor RSA-2048 bits, RSA Security offered 200 000 US\$.
- Breaking Elliptic Curves: 725 000 \$. *** certicom*
- =>nobody can claim these are broken...
- BTW. Not even 1 dollar for AES...

Signature Schemes in Practice

Some Signature Schemes

- ✓ RSA-OAEP only with long keys [>4096 bits]
- ✓DSA.

- Main DSA standard out of date, 80-bit security.
- ✓ Switch to ECDSA Elliptic Curve, recommended.

Stesh, Quartz[Patarin, Goubin, Courtois]

Some Signature Schemes on a Smart Card

Cryptosystem	SFLASH	NTRU	RSA-1024	RSA-1024	ECC-191
Platform	SLE-66	Philips 8051	SLE-66	ST-19X	SLE-66
ROM [Kbytes]	3.1	5	NA	NA	NA
Frequency [MHz]	broken in 2007	16	10	13	10
Co-processor	no	no	no	yes	yes
Length of S [bits]	259	1757	1024	1024	382
Timing [ms]	59	160	many s	111	180
Timing × Frequency	590	2560	big	1443	1800

Which One Should Use ?

http://www.nsa.gov/ia/industry/crypto_suite_b.cfm

• ECDSA + SHA-256. NST

 \Rightarrow The NSA has acquired a licence for 23 Certicom patents. Can sub-licence.

- \Rightarrow RSA is no longer recommended !
- \Rightarrow DSA is dead too.

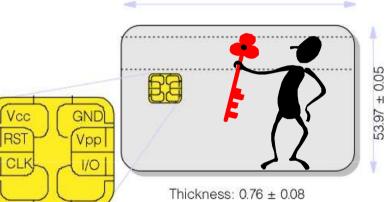
Cheap Open-Source Alternative: RSA-PSS 2048 bits.

- No patents.
- OK if you have enough computing power and RAM...

Signatures

- MACs are widely used, 100s of times faster. Yet symmetric => fundamentally not very secure...Public key solutions are a MUST. Will slowly become ubiquitous.
 - PK crypto everywhere !
- 2. Consequence: Secure Hardware Devices are a MUST (keep private thing private).

All these developments are ahead. Very little of this is in fact used today...

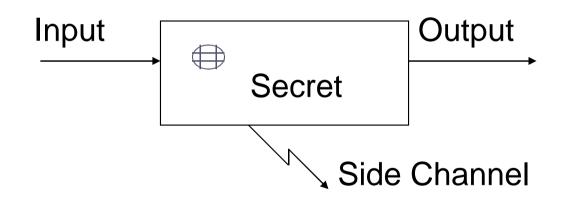


Secure Hardware Devices

KEEP private keys private all the time ! Must be securely

- Generated
- Stored
- Used
- Backup
- Destroyed

No real security with a PC.



• Example: Smart Cards.

Note: the cards must still be protected against channel attacks !

cost: +30 % ?

7. Applications of Digital Signatures

Main Applications of Digital Signatures

- Bank cards
- Web SSL
- Software authentication (Microsoft, JavaCard Apple Apps, Nokia)

More Applications of Digital Signatures...

- e-ID cards, e-Passports
- all public key solutions (even encryption only !) require PKI, requires signatures !
- secure email, authenticity and anti-spam
- Data and disk authenticity
- Signing notary acts
- Signing medical prescriptions: French Doctor Card CPS signs data before sending to Caisse d'Assurance Maladie.
- Vitale 2 will sign when you buy medicines at a pharmacy shop.

7

Digitally Signed pdf @UCL

) 🍓 • 🌍 🔶 🖣 / 1	• • • 125% • 📑 🙀	Find	•		
At least one signature has problems.					🧾 Signature
Signatures		- £4	425.75	€ 5,901.00	<u> </u>
		- £6	,417.75	€ 8,557.00	
& -	Validate All	1	00.00	€ 0.00	
🗆 🚰 Rev. 1: Signed by Anthony Finl	kelstein <a.finkelstein@cs.ucl< td=""><td>1</td><td>00.00</td><td>€ 0.00</td><td></td></a.finkelstein@cs.ucl<>	1	00.00	€ 0.00	
Signature validity is unknown:		- 4	20.00	€ 0.00 € 196,073.00 € 117,643.80	
	fied since this signature was applie 0.00	£14	7,054.75		
	ecause it has not been included in 0.00 the clock on the signer's computer	£88	,232.85		
E Signature Details	£0.00	£23	5,287.60	€ 313,716.80	
Last Checked: 2010.11.02 09:10	*20 Z				
Field: Signature2 on page 1 Click to view this version					
	0.00	147	,054.75	€ 196,073.00	
	0.00	29,	410.95	€ 39,214.60	
	£0.00	£17	6,465.70	€ 235,287.60	
	hony 1	inkelshin.	DN: cn=Anth o=University Science, em	ed by Anthony Finkelstein ony Finkelstein, c=GB, College London, ou=Computer ail=a.finkelstein@cs.ucl.ac.uk 1.01 10:07:52 Z	
•1	e Dean	for Research: _		Date:	

Is It Secure?

Certificate Viewer	x	×			
This dialog allows you to view the details of a certificate and its entire issuance chain. The details correspond to the selected entry.		the details of a certificate and its entire issuance chain. The cted entry.			
Show all certification paths found		d			
Anthony Finkelstein <a.fink details="" legal="" notice<="" policies="" revocation="" summary="" th="" trust=""><th>Summary Details Revocation Trust Policies Legal Notice</th></a.fink>		Summary Details Revocation Trust Policies Legal Notice			
Certificate gata: Name Value Validity ends 2012/12/05 16:25:20 Z Validity starts 2007/12/05 16:25:20 Z Serial number 47 91 0B AF B7 DC 53 1A 29 EC Serial number 47 91 0B AF B7 DC 53 1A 29 EC Subject c=GB, email=a.finkelstein@cs.ucl: Subject c=GB, email=a.finkelstein@cs.ucl: Subj		Certificate data: Name Value Image: MD5 digest 6A 01 D1 C2 FD D3 40 EB 30 0A Image: SHA1 digest F6 BA B9 30 77 4E 3D 7F DF 0F A Image: SHA1 digest F6 BA B9 30 77 4E 3D 7F DF 0F A Image: SHA1 digest F6 BA B9 30 77 4E 3D 7F DF 0F A Image: SHA1 digest F6 BA B9 30 77 4E 3D 7F DF 0F A Image: SHA1 digest F6 BA B9 30 77 4E 3D 7F DF 0F A Image: SHA1 digest S0 82 02 2B A3 08 20 22 3A 00 30 0 Image: SHA1 digest o <see details=""> Image: Public key RSA (1024 bits) Image: Validity ends 2012/12/05 16:25:20 Z <td< th=""></td<></see>			
ок	1	ок			