Polynomial Equations by Re-linearization and XL

Nicolas Courtois ${ }^{1,3}$, Alexander Klimov ${ }^{2}$, Jacques Patarin ${ }^{3}$, Adi Shamir ${ }^{4}$
${ }^{1}$ Paris 6 University and Toulon University, France
${ }^{2}$ Moscow State University, Moscow, Russia
${ }^{3}$ Bull CP8, Louveciennes, France
${ }^{4}$ The Weizmann Institute of Science, Rehovot 76100, Israel

Multivariate Cryptography.

Slide 2

(...) All the mathematicians know that the passage from one to several variables is an important leap that goes with complications and requires completely new methods (...) distinguished French mathematician

The main candidate: HFE (Hidden Field Equations, Eurocrypt'96). HFE security is related to 4 difficult problems: MQ, MinRank, IP and HFE. The present paper studies MQ - Solving Multivariate Quadratic Equations.

The problem MQ (Multivariate Quadratic)

$\mathbf{M Q}(\mathbf{K}, \mathbf{m}, \mathbf{n})$: Find a solution (at least one)
to a system of \mathbf{m} quadratic equations with \mathbf{n} variables over a ring K.
$f:\left\{\begin{array}{l}y_{k}=\sum_{i=0}^{n} \sum_{j=i}^{n} \lambda_{i j k} x_{i} x_{j} \\ \text { with } k=1 . . m, \quad x_{0}=1\end{array}\right.$

Slide 3

Univariate case:

$\operatorname{MQ}\left(\mathbb{Z}_{\mathbf{N}}, \mathbf{1}, \mathbf{1}\right)$ is as hard as factoring N (Rabin).
$\mathbf{M Q}(\mathbf{G F}(\mathbf{q}), \mathbf{m}, \mathbf{1})$ is polynomial (e.g. Berlekamp algorithm).
Multivariate case:
Fact: $\mathbf{M Q}(\mathbf{K}, \mathbf{m}, \mathbf{n})$ is NP-complete on a field, even if $K=G F(2)$.

Restriction:

From now on we consider only homogenous equations. A non-homogenous system is homogenized by adding one new variable.

MQ we want to solve

In cryptography we are interested in $\mathbf{M Q}(\mathbf{K}, \mathbf{m}, \mathbf{n})$ with:

- K is a small finite field $K=G F(q)$, e.g. $G F(16)$.
- The characteristic p is small, e.g. 2 .
- Frequently the system is sufficiently defined or overdefined $m \geq n$.

Slide 4

- The system must have a solution, which is not natural for $m>n$.

Apparently, in the vast literature about solving such systems by Gröbner bases we have usually:

- K algebraically closed, thus infinite.
- The characteristic p is 0 .
- The system is exactly defined $m=n$.
- The system is random.

Classical algorithms

Gröbner bases - an important part of applied mathematics.
The Buchberger algorithm [1965] and all the followers order the monomials in different ways and eliminate them.

The best of these algorithms we are aware of is F_{5} by Jean-Charles Faugère.
The complexity of F_{5} :

- Proved $2^{3 n}$ and $2^{2.7 n}$ in practice.
- The exhaustive search is in q^{n}

Still MQ is hard for about $n>15$.

Our discovery

The fact that the systems become much easier to solve when $m>n$ seems to have been completely overlooked so far.

$$
\text { Linearization }-m \geq n^{2} / 2
$$

If $m=\varepsilon n^{2}$, with $\varepsilon=1 / 2$ we proceed as follows:
1 Introduce new variables $y_{i j}=x_{i} x_{j}$
2 Solve the resulting linear system
(at least m equations with m variables).
Slide 6
\rightarrow Recover the x_{i} from the $y_{i i}$.

Shamir and Kipnis in an attempt to break the HFE cryptosystem (Crypto'99) have proposed to extend linearization:

Re-linearization - $m=\varepsilon n^{2}, \varepsilon<1 / 2$

3 Add also new equations such as $y_{12} y_{34}=y_{13} y_{24}$
4 We get another system to solve with $\varepsilon^{\prime}>\varepsilon$.

Why relinearization was a bad idea

It introduces a great many additional variables.
Substitutions on those variables create more equations that can possibly be linearly independent.

The XL algorithm can be seen as an improved version of relinearization that uses
Slide 7 only initial variables, and thus produces less unnecessary equations. It is also more flexible.

Why relinearization was a great idea

The claim [Shamir-Kipnis, Crypto'99]:
A system of εn^{2} equations with n variables can be solved in expected polynomial time for any fixed $\varepsilon>0$.

Result: Our experiments on XL consolidated this claim.

Why XL?

EXtended Linerization or Multiply(X) and Linearize.

Conventions

$K=G F(q), f$ has m equations and n variables x_{i} over K.
For a given output $y \in K^{m}$ we put
Slide 8

$$
l_{k}=f_{k}\left(x_{1}, \ldots, x_{n}\right)-y_{k}
$$

The instance to solve is:

$$
\left\{\begin{aligned}
l_{1}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
l_{m}\left(x_{1}, \ldots, x_{n}\right) & =0
\end{aligned}\right.
$$

We consider only terms modulo the equation $a^{q}=a$ of the finite field K.
Powers are in the range $1, \ldots, q-1$.
Conventions, Terms

Let 1 or x^{0} denote the set of constant terms.
Let x denote the set of terms $\left\{x_{1}, \ldots, x_{n}\right\}$.
Let x^{k} the set of all terms of degree exactly k (powers $1, \ldots, q-1$ allowed).
Conventions, Equations

We call l the set of initial equations $l_{i}=0$.
We call $x l$ the set of equations of the form $x_{i} l_{j}=0$.
We call $x^{k} l$ the set of equations of the form $\prod_{j=1}^{k} x_{i_{j}} * l_{k}=0$.
Example:
$x^{2} l \cup l$ is the set of all the equations l_{i} and $x_{i} x_{j} l_{k}$ (we need $i \neq j$ if $q=2$).
The terms present in these equations are $x^{4} \cup x^{2} \cup 1$.

Equation Sets

Let $D \in \mathbb{N}$. We call \mathcal{I}_{D} the union of

$$
\mathcal{I}_{D} \stackrel{\text { def }}{=} l \cup x l \cup \ldots \cup x^{D-2} l
$$

Meaning of \mathcal{I}_{D} equations:

- they are all true for the solution x.

Slide 10

- they are of total (multivariate) degree $\leq D$.
$\mathcal{I}_{D} \rightarrow \mathcal{I}_{\infty}$ and $\operatorname{Vect}\left(\mathcal{I}_{\infty}=\mathcal{I}\right.$.
\mathcal{I} is the ideal spanned by the equations l_{i}.
The purpose

Eliminate all but one variable.
Theorem [extended version of this paper] relinearization technique does the same in a disguised way.

Description of XL

$D \in \mathbb{N}$ is the parameter of XL algorithm.

1. Multiply: Generate all the products $\prod_{j=1}^{k} x_{i_{j}} * l_{i} \in \mathcal{I}_{D}$ with $k \leq D-2$.
2. Linearize: Consider each monomial in x_{i} of degree $\leq D$ as a new variable and perform Gaussian elimination on the equations obtained in 1.

The ordering on the monomials must be such that all the terms containing one

Slide 11 variable (say x_{1}) are eliminated last.
3. Solve: Assume that step 2 yields at least one univariate equation in the powers of x_{1}. Solve this equation over the finite fields (e.g., with Berlekamp's algorithm).
4. Repeat: Simplify the equations and repeat the process to find the values of the other variables.

Question:

What D makes XL algorithm work for given m, n ?

Asymptotic analysis

Estimation of the number of equations in \mathcal{I}_{D} :

$$
A l l \approx m \cdot n^{D-2} /(D-2)!
$$

We suppose that most of them are linearly independent, Free \approx All.
Slide 12
Estimation of the number of all terms in x^{D} :

$$
T \approx n^{D} / D!
$$

The algorithm XL works when Free $\approx T$.

$$
\begin{aligned}
n^{D} / D! & \approx m n^{D-2} /(D-2)! \\
n^{2} & \approx m D(D-1)
\end{aligned}
$$

$$
D \approx \frac{n}{\sqrt{m}}
$$

Experiments with m=n

Slide 13
4 variables and 4 homogenous quadratic equations, $G F(127)$

XL equations		${ }_{\text {(Free +B-T-1) }}^{\Delta}$	B	XL unknowns (B degrees)	
type	Free/All			T	type
l	4/4	-6	1	10	x^{2}
$x^{4} l \cup x^{2} l \cup l$	122/184	-5	3	129	$x^{6} \cup x^{4} \cup x^{2}$
$x^{8} l \cup x^{6} l \cup x^{4} l \cup x^{2} l \cup l$	573/1180	-3	5	580	$x^{10} \cup x^{8} \cup x^{6} \cup x^{4} \cup x^{2}$
$x^{12} l \cup x^{11} l \cup x^{10} l \cup \ldots$	3044/7280	-2	14	3059	$x^{14} \cup$.
$x^{14} l \cup x^{12} l \cup x^{10} l \cup \ldots$	2677/6864	0	8	2684	$x^{16} \cup x^{14} \cup x^{12} \cup \ldots$

T: number of monomials
$\Delta \geq 0$ when XL solves the equations, ($\Delta=$ Free+B-T-1)
B: nb. of monomials in one variable e.g. $x_{1} \quad$ Free/All: numbers of free/all equations of given type

Results

All simulations with $m=n$ showed that we need $D=2^{n} . \quad($ due to $\exists \bar{K})$

Experiments with $\mathrm{m}=\mathrm{n}+1$

8 variables and 9 homogenous quadratic equations, $G F(127)$

XL equations		Δ (Free + B-T-1	B	XL unknowns (B degrees)	
type	Free/All			T	type
l	9/9	-27	1	36	x^{2}
$x^{2} l \cup l$	297/333	-68	2	366	$x^{4} \cup x^{2}$
$x^{4} l \cup x^{2} l \cup l$	2055/3303	-25	3	2082	$x^{6} \cup x^{4} \cup x^{2}$
$x^{5} l \cup x^{3} l \cup x l$	4344/8280	-5	4	4352	$x^{7} \cup x^{5} \cup x^{3} \cup x$
$x^{6} l \cup x^{4} l \cup x^{2} l \cup l$	8517/18747	3	4	8517	$x^{8} \cup x^{6} \cup x^{4} \cup x^{2}$

T: number of monomials
$\Delta \geq 0$ when XL solves the equations, ($\Delta=$ Free+B-T-1)
B: nb. of monomials in one variable e.g. x_{1} Free/All: numbers of free/all equations of given type

Results

All simulations with $m=n+1$ showed that $D=n$.
$m=n+2 \ldots n+4$
8 variables and 10 homogenous quadratic equations, $G F(127)$

XL equations		$\begin{gathered} \Delta \\ (\text { (Free }+\mathrm{B}-\mathrm{T}-1 \text {) } \\ -40 \end{gathered}$	B	XL unknowns (B degrees)	
type	Free/All			T	type
$x^{2} l \cup l$	325/370		2	366	$x^{4} \cup x^{2}$
$x^{3} l \cup x l$	919/1280	1	3	920	$x^{5} \cup x^{3} \cup x$

8 variables and 12 homogenous quadratic equations, $G F(127)$

XL equations		$\begin{gathered} \Delta \\ (\text { (Free }+ \text { B-T-1) } \\ -31 \end{gathered}$	B	XL unknowns (B degrees)	
type	Free/All			T	type
$x l$	96/96		2	128	$x^{3} \cup x$
$x^{2} l \cup l$	366/444	1	2	366	$x^{4} \cup x^{2}$

Experiments on Relinearization $D=6$

Slide 16

n	m	l	n^{\prime}	$\mathrm{m}{ }^{\prime}$
4	8	2	9	9
4	7	3	19	19
4	6	4	34	40
4	5	5	55	86
6	10	11	363	394
6	9	12	454	548
6	8	13	559	806
6	7	14	679	1541
8	12	24	2924	3794
8	11	25	3275	4584
8	10	26	3653	5721

Number of variables in the original quadratic system
Number of equations in the original quadratic system
Number of parameters in the representation of the $y_{i j}$
Number of variables in the final linear system
number of equations which were required to solve the final linear system

Table 1: Experimental data for degree 6 relinearization

Theory

When $m \approx n, D \approx \frac{n}{\sqrt{m}} \approx \sqrt{n}$.

Experimental Results

- $D=2^{n}$ when $m=n$.

Slide 17

- $D=n$ when $m=n+1$.
- D decreases quickly for $m=n+2$.
\vdots
- It seems that indeed $D \rightarrow \mathcal{O}(\sqrt{n})$.

The simplified estimation $D \approx \frac{n}{\sqrt{m}}$ proved likely to be true when m exceeds n by a small value.

More simulations are needed.

> The complexity of XL

Let ω be the exponent of Gaussian reduction.

$$
2 \leq \omega<3
$$

Slide 18
For a system of $m=\varepsilon n^{2}$ equations with n variables we estimate:

$$
D \approx \frac{n}{\sqrt{m}} \approx\left\lceil\frac{1}{\sqrt{\varepsilon}}\right\rceil
$$

XL is expected to solve $m=\varepsilon n^{2}$ equations with n variables in polynomial time

$$
W F=T^{\omega} \approx \mathcal{O}\left(n^{\frac{\omega}{\sqrt{\varepsilon}}}\right)
$$

Solving systems with m close to n

Slide 19

It is unclear how many variables should be guessed.
For example let's assume that less than \sqrt{n} variables are fixed.
Then FXL is then expected to solve a system of n quadratic equations with n unknowns over $G F(q)$ in subexponential time:

$$
W F \approx q^{\sqrt{n}} n^{\omega \sqrt{n}}
$$

Solving MQ in Practice

FXL might be subexponential even when $m=n$.
However it becomes faster than the exhaustive search only for relatively big values of $n>100$, for example:

$$
\text { Direct application to HFE Challenge } 1
$$

Slide 20

We have $n=80$. We expect that FXL requires a Gaussian reduction with the number of variables of about:

$$
n^{\sqrt{n}} / \sqrt{n}!\approx 2^{38}
$$

Current methods for sparse Gaussian elimination go up to about 2^{20} variables. With 2^{38} variables the FXL complexity will exceed the exhaustive search in 2^{80}.

HFE Challenge 1

At Crypto'99 Shamir and Kipnis reduced the problem of recovering the secret key of the HFE Challenge 1 to the following problem (MinRank):

- Given n matrices M_{i} of size $n \times n$ over $G F\left(2^{n}\right), n=80$.
- Find a linear combination M of M_{i} that has a rank $\leq r, r=7$.

Slide 21
Method proposed at Crypto'99

Reduce this (MinRank) problem to an overdefined instance of MQ:

- $\operatorname{Big} K=G F\left(2^{n}\right)$
- $n(n-r)$ equations
- $r(n-r)+n$ variables

Bad news

- Solving this MQ by XL with conjectured polynomial complexity requires about 2^{152} computations.
- MinRank is NP-complete [Shallit, Frandsen, Buss 1996].

Slide 22

- Thus the overdefined instances of MQ generated in such a way could be harder than average and not be solved in polynomial time at all.

Improved method
Solve this MinRank directly in about 2^{82} [Courtois, not published yet].

Direct method

Works in 2^{62} without recovering the secret key [Courtois, not published yet].

Conclusion

We proved that relinearization reduces to XL algorithm.
A system of $m=\varepsilon n^{2}$ equations with n variables that has a solution is expected to be solved by XL in polynomial time of about

$$
n^{\frac{\omega}{\sqrt{\varepsilon}}}
$$

A system of n equations with n variables over a small finite field is expected to be solved by FXL in subexponential time of about

$$
q^{\sqrt{n}} n^{\omega \sqrt{n}}
$$

Applications in cryptography

The best known algorithms for solving multivariate equations over a very small finite field are still close to the exhaustive search.

Many cryptosystems using such equations can be proposed.
HFE can still be believed as one of the strongest candidates.

